Loading AI tools
鉄道の動力を電気とすること ウィキペディアから
鉄道の電化(てつどうのでんか)とは、鉄道の動力を電気にすることである。電化された路線では、動力に電気を使用する電気機関車や電車が用いられる。そのため、燃料や水を車両に積載する必要がない。電化方式は世界でいくつかの種類が存在する。
鉄道において電気動力は、蒸気機関や内燃機関に比べエネルギー効率で優れ、速度向上や快適性向上といった輸送サービス改善にも向くが、地上側に数々の電気設備が必要となり、それらの障害による停電には弱い。
車両外から電気を取入れるものが一般的で、車両外から電気を送ることを「饋電」(きでん)と呼び、車両側でその電気を取入れることを「集電」(しゅうでん)と呼ぶ[1]。集電方式は架空電車線方式と第三軌条方式の2つに大別される。また、電源の電流は直流を用いるものと交流を用いるものの2種類に分かれる[2]。なお、車両に蓄電池等の電源を搭載するものや、ケーブルカー(鋼索鉄道)・超電導リニアのような車両側に走行用電力が不要なものも存在する。
外部から取入れた電力は、主電動機の種類に応じて車両内で変換した上で使用される。
もっとも一般的な電圧として、6種類が欧州および国際標準化のために策定されている。この他にも、世界では他の電圧による電化線が多く存在してる。
ヨーロッパ規格(EN)50163と[3] 、国際電気標準会議(IEC)[4]においては、以下が規格化されている。
Electrification system | 電圧 | ||||
---|---|---|---|---|---|
最低 一時的 |
最低 常用 |
通常 | 最大 常用 |
最大 一時的 | |
直流600 V | 400 V | 400 V | 600 V | 720 V | 800 V |
直流750 V | 500 V | 500 V | 750 V | 900 V | 1,000 V |
直流1,500 V | 1,000 V | 1,000 V | 1,500 V | 1,800 V | 1,950 V |
直流3 kV | 2 kV | 2 kV | 3 kV | 3.6 kV | 3.9 kV |
交流15 kV, 16.7 Hz | 11 kV | 12 kV | 15 kV | 17.25 kV | 18 kV |
交流25 kV, 50 Hz (EN 50163) 及び 60 Hz (IEC 60850) |
17.5 kV | 19 kV | 25 kV | 27.5 kV | 29 kV |
元々鉄道は人力若しくは馬力を使ったトロッコのようなものから始まり、その後蒸気機関車開発等もあったが、電気鉄道は1879年にドイツのジーメンスがベルリン博覧会で軌間490mm・総距離300mほどの小さな線路(なお、集電はこの間にある第3軌条から行った)に外部集電で電気を取る機関車を走らせたのが始まりとされる[5](これ以前にも電気鉄道を考案した人はいたが、いずれも「電気動力車に電池を搭載する」という形式で電池容量に乏しく重量もかさむため実現の日の目を見なかった[6])。こうした見世物的ではない電車営業運転は、1881年のドイツのベルリンにおける路面電車が最初であったといわれる[7]。
電化は当初どこでも大都市の交通としての路面電車や地下鉄に採用されており、電気方式は600V直流を送電して軌道上に架線を設ける(路面電車)か軌道の片側に第3レールを設ける(地下鉄)のが一般的だった。このように輸送機関に対する電気の応用は良い成績を示したので次に汽車の電化[注釈 6]が問題となるに至った[19]。
20世紀初頭になるとそれまで路面電車に使用されていた500-600Vよりはるかに高圧の交流電流が商用に供給されるようになったが、こうした交流送電における一般の電力の50~60Hzは(当時の)機関車の電動機に使いにくかったので、路面電車などで行われた「電流を変換し直流で使用する」か、3000V15Hzという「比較的電動機に使いやすい低周波数の三相交流を使う」案が生まれたものの、三相交流による交差点の架線複雑化や三相交流電動機が使いにくい[注釈 7]が懸念され、ここから交流送電は後にイタリアで見られる「それでも三相交流低周波数を使う[注釈 8]」かスイスで新しく見られた「はるかに高電圧(1万5千V)の単相交流を使う」という2案に分かれ、高電圧単相交流はその後ドイツやオーストリアにも普及した[11]。しかしこの単相交流は駆動用に適した交流整流子電動機には商用周波数では整流が困難であったため低周波数の交流を使う(低周波交流饋電方式)必要性があり、このためほかと融通の利かない鉄道独自の電源が必要になるという問題があった[16]。
1910年(明治43年)頃までには(欧州)各国で汽車の電化計画が盛んになったが、煙害根絶目的のために電化したごく一部の地域(サンゴッタルドトンネル等)を除き「石炭の輸入若しくは移入を抑えるため水力等[注釈 9]でも得られる電力で鉄道を走らせる」という経済的な目的で始めたので、まず周到に採算性の計算を行ったところ、この時は大半の国で否定的な結論が出ており、後に電化大国になるスイス等でも1912年の調査報告で「いずれの線路でももっと運輸量が増加して施設の利用率が良くなるまでは、電化が利益になる路線はない」と結論を下している[注釈 10]。他ヨーロッパ諸国で電化されたのは元々石炭がルール地方から移入して高価だったバイエルン山間部(山の水力発電所近くなので電力は安い)やプロイセンのデッソーからビッターフェルトの試験的な電化区間、スウェーデンの北部線(元々鉄鉱石輸送が盛んで、水力も利用でき、北極圏のため蒸気機関車が不利だった)等ごく僅かであった[20]。
こうした「長距離鉄道の電化は経済的でない」とされた理由には、朝倉希一によると以下のような理由が挙げられている[21]。
一方、アメリカでは私鉄各自の判断で大規模な電化に踏み切った物もあり、長距離鉄道の送電に単相交流方式のほかに直流高圧(3000V程度)の送電方式も選ばれ、1913年にこの直流3000V電化方式に成功したシカゴ・ミルウォーキー鉄道は1917年からシカゴからロッキー山脈やシエラネバダ山脈を越える710㎞近くにも及ぶ電化区間(当時世界最長)を設置し、1920年には太平洋岸の350㎞の電化も済ませ、こうした電化で煙からの解放のほかに運転時間20%短縮や回生ブレーキによる山越えのエネルギー回収(20 - 25%ほど)というメリットもあったものの、運転費そのものは蒸気機関車時代の方が安く済んでいたと判明した(鉄道会社の方では多少電力費が高コストになっても電化による乗客数増加等を期待していた[注釈 13])。その後、アメリカ合衆国ではミルウォーキー鉄道のような長距離電化はあまり考えられず、電化区間ごとに機関車をつけ変えていては大変なので、直通できる電気式ディーゼル機関車牽引で通しで走るようになった[22]。
一方、アメリカ以外の各国で鉄道電化が盛んになったのはスイスやイタリア等を除くと[注釈 14]1945年以後で、オランダのような殆ど鉄道が壊滅した国では戦争で破壊されたシステム復旧が必要で、他の国でも自国産の動力源を使いたいと考えていたことで電化が大きなうねりとなった[23]。
ヨーロッパでは元々電化が進んでいたイタリアでは戦前から前述の3000V直流饋電を採用して三相交流から徐々に切り替えていたが、戦後、残存三相交流路線を直流3000Vに交換して電化の統一を行うことに決定し、これによってまず戦火にやられた路線が補修時に直流に変更され、次いでモダーヌ-トリノ-ジェノヴァ線、ジェノヴァ - ヴェンティミーリア線、ジェノヴァ-ヴォゲーラ線、ボルツァーノ-ブレンネロ線などが1960年代までに変更された。最後まで三相交流方式が残ったのはピエモンテ州南部の地方路線で1970年代半ばだった。
ドイツは戦争の痛手が大きく[注釈 15]、東西分裂等の悪影響もあったが、それでも戦前通り単相交流15000V 16・2/3Hzによる電化を広げていった。
イギリスは自国内に大きな炭鉱があることもあって電化の経済的メリットが薄く、大都市周辺と南部に電化区間が集中し、全体では暫く蒸気機関車時代が続いた後、1955年にディーゼル機関車による動力近代化計画を発表した。
フランスはパリ-リヨン線を1946年に直流1500V電化を行って同国南部の路線にも拡大したが、25000V50Hz電化も検討し始め、1951年のエクスレバン-ラロシュ・シュル・フォロン間48マイル(78㎞)を試験的に電化し、水銀整流器と直流電動機の組み合わせた機関車が成功し、南部(その後もかなり直流1500V)より電化が遅れたフランス北部はこの方式で電化された[24]。世界的に交流電化が広がるきっかけになったのは、この単相商用交流饋電の成功からで、その後全域とまでは行かなくとも新規幹線にこれを採用した国がコンゴ(1952)、ポルトガル(1955)、インド(1958)、イギリス(1959)、ソ連、ハンガリー、中国と次々に現れた(日本も1954年に試験・1957年に営業運転開始を行っている)[25]。
国によって電化時期や経緯が異なるので電圧や(交流の場合)周波数もバラバラであり、ヨーロッパを例に取ると第二次世界大戦前はフランス・オランダ・イギリス[注釈 16]は直流1500V、ドイツとスカンディナビア諸国は単相交流1万5千V16.67(16と2/3)Hz、イタリア(三相交流切替後)・ロシア・スペインは直流3000Vを使用し、いずれも専用発電所から送電していることが多かったが、1970年代になると1920年代から研究されていた50Hz単相交流という一般商用周波数を用いた饋電が広がり、イギリス・フランス・トルコ・日本等で新たな電化路線に使用されたが古い方式を残す路線も多かったので場所によっては電気車は3種類又は4種類の電力を使える必要が生じたものもあった[26]。
電化区間自体も国策や資源(電力)事情、産業動向等により、各国での電化率には偏りが見られる。スイス、オランダといった国々が90%を越えるほか、ドイツやフランス、ロシア等のヨーロッパ諸国や、中国、韓国、台湾、日本等の東アジア諸国は50%を越える。北米大陸やオセアニア、東南アジア等は電化率が低い。 スイスなどでは比較的電化費用が安価で石炭産出が少なかったことから比較的早いうちに鉄道路線はほぼ全線が電化されている。アメリカやオーストラリアなどの大陸横断鉄道は電化されていない区間が殆どであるが、ロシアを横断するシベリア鉄道は電化されている。
なお、都市鉄道や地下鉄では電化のデメリットである「高コスト」が輸送量増大が見込めることで打ち消せられるため、全線が電化されているのが原則である。
後述の通り、日本国内で電化・非電化区間が混在する路線は運行系統が途切れて別々の路線として扱われることが多い。例外的に大井川鉄道井川線のように輸送量増大目的ではなく何らかの理由で電気運転をやむを得ず使用する路線では非電化側の列車が直通する場合もある。
諸外国では、様々な方法を使って非電化混在路線での直通運転に対応している。例えばアメリカでペンシルバニア鉄道のワシントン‐ニューヨーク電化以前は、ニューヨーク手前まで来た蒸気機関車の列車がニューヨーク入口のボルティモア・ベルトラインのトンネル(ここのみ電化)だけ蒸気機関車ごと電気機関車が牽引していた事例があった[27][12]。機関車を交替することで非電化混在路線に対応するケースもある[28]。特にインドなどの国でこのような運転方法がよく見られる[29][30]。
電気軌道では、路面電車系統では1895年(明治28年)に京都市で京都電気鉄道が開通しているが、一般の鉄道では甲武鉄道(現在のJR中央本線)が1904年(明治37年)に飯田町 - 中野間を電化したのが始まりである。当時の電化には、600V(京都電気鉄道などのように500Vの所も一部存在)の直流饋電が採用されていた[1](というより用いないといけなかった[注釈 17])。甲武鉄道は1906年(明治39年)の鉄道国有法によって国有化され、国営鉄道初の電化区間となった。以降、大正期は山手線等東京都市圏での通勤電車走行を目的に実施され、昭和初期には城東線(現・大阪環状線)等大阪都市圏でも実施された。
一方私鉄では蒸気機関車運行だった南海鉄道(後の南海電気鉄道)が1907年(明治40)年から電化を始め、1911年(明治44年)には60 ㎞以上の区間の電化を完成させるなど国営鉄道より長大な電化区間が誕生し、この時期国営鉄道にもなかった総括制御付きのボギー車(電2形、1909年)や、貫通扉や便所のある電車(電3・電附1形、1911年)導入など、この当時は私鉄の方が電化に関しては先進的な面が強かった[31]。
最も国営鉄道側も手をこまねいていた訳ではなく、1912年(明治45年)に煤煙問題に悩まされていた碓氷峠を電化し、初の電気機関車の導入、1914年(大正3年)には、京浜線(現・京浜東北線)の電車運転開始に際し輸送量増加に伴う電圧降下防止に昇圧されることになり、当時の技術等を考慮した結果、それまでの600Vから1,200V(丁度2倍の電圧なので電動機の直列並列を切替えれば従来の600V区間との直通もできた)が使用され、その後技術向上もあってさらに電圧を上げられるようになり、1922年(大正11年)に出された東海道本線の全線1,500V電化の計画[注釈 18]に先立って試験を行い、その結果を私鉄にも公開したところ、同年の大阪鉄道が私鉄で初めて1,500 V直流電源を採用(河内長野 - 布忍間)し、東海道線電化以後開業の私鉄は基本的に1,500Vを採用するようになり、国営鉄道側も京浜線・中央線・山手線を1931年(昭和6年)までに1,500Vに昇圧した[32]。
この間、1927年(昭和2年)9月26日の東京朝日新聞「近く電化調査員会を設け電化区間の順位決定」という記事によれば、以下の区間が電化候補になったと報じられている。(路線名は出典ママ)
その後、北陸線米原 - 今庄、奥羽線福島 - 米沢、山陰線鳥取 - 豊岡、東海道山陽線大津 - 明石間電化が昭和4年度予算に必要経費が計上されたが、 浜口雄幸内閣による緊縮財政により各線電化が中止に追込まれてしまった[33]。
時系列的に少し戻るが、昇圧のきっかけとなった東海道本線電化計画は試験機関車が来る前[注釈 19]から丹那トンネル開通まで見越して(実際の開通は1934年(昭和9年))東京から国府津まで1,500 Vで直流電化(1925年(大正14年))したが、その後は東海道線電化は一時考えないで大阪付近の輸送量が多い地域の電化や清水トンネル・仙山線といった長大トンネル付近の電化を優先的に行い、手間取っていた丹那トンネルの工事完了後は再び東海道線電化も考えられたが、1937年(昭和12年)に日中戦争が勃発、その先行きも不透明な中1941年(昭和16年)に対米開戦と、日本は戦争へと突き進み、電化工事は戦後まで持ち越されている[34]。 (これら以外では関門トンネル(1941年(昭和16年))、外地の朝鮮総督府鉄道京元本線の福渓 - 高山間(1944年(昭和19年)なども電化)
こうした限られた部位のみの電化は当時の軍部が国営鉄道を建設・運営する鉄道院・鉄道省に対し、戦時に変電所を攻撃されると運転不能になることを理由に、基本的には非電化とすることを主張していたといわれているが[注釈 20]、国鉄の技師であった朝倉希一によると電化遅れについては軍隊の話は一切出ず「イギリスから輸入した電気機関車のトラブルとそれに伴う高コストが電化を遅らせた」としている[注釈 12]
なお、一から路線を作る予定だった「弾丸列車計画」(後に東海道新幹線として帰結する)でも東京 - 静岡・名古屋 - 姫路の2か所のみを直流3,000Vで電化し、ここ以外は当面非電化による蒸気機関車牽引予定で[35]、そのために大型の蒸気機関車の設計がいくつか行われていた[36]。
この時期は私鉄でも電化工事が進み、1927年には小田原急行鉄道で82km、そして1929年・1930年には関東の東武鉄道と関西の参宮急行電鉄で立て続けに、130kmを超す当時としては異例の長距離電車が運行され[注釈 21]、目黒蒲田電鉄・宮城電気鉄道・富山電気鉄道など当初より電気軌道の利便性を兼ね備えた電気鉄道の開業が相次いだ。 (外地も含めると金剛山電気鉄道の鉄原 - 内金剛なども長大電化区間になる)
こうした大手の私鉄と異なり中小私鉄では戦前は電化ではなく内燃動車で効率を上げたところも多かったが、太平洋戦争の影響でガソリン等は配給制(闇市場でも高騰)になったため内燃動車に頼れなくなり、蒸気機関車が復帰を始めるも、戦争末期から石炭も品質が低下し数量確保さえ困難な時代[注釈 22]に成ったため、石炭産地の北海道と九州以外の非電化私鉄は燃料の確保に支障をきたすようになった。
これに反し電気事業の進歩は著しく発電力は戦前以上に進んだため、中小私鉄でさえ多少の投資をしてでも電化した方が採算が合うと電化に踏み切ったところが多かった。(特に昭和21年から26年(1946 - 1951年)は電化件数が多く、1946年1月の近江鉄道八日市線から、1951年12月の長岡鉄道(後の越後交通長岡線)の大半まで、(既存電化区間有無に関わらず)一部分の電化や軌道・貨物線も含めると24社[注釈 23]もあり、大半は十数km程度の電化だったが、大井川鉄道39.5km、長岡鉄道31.6km(翌年残り2.0kmも電化)と30km以上も一度に電化している鉄道も存在している[注釈 24]。)
しかし、その後はドッジ・ラインによる金融引締めが始まり電化工事の資金繰りが困難になったこと、さらに燃料事情が好転、石油類の安定供給並びに気動車の普及に伴い、非電化路線の電化事例は1954年(昭和29年)の三岐鉄道を最後に、約20社程度に留まった[注釈 25][注釈 26]。
国鉄でも組織内部のみならず参画院方面からも鉄道電化が要望されることとなり、十河信二が国鉄総裁の時、3,000kmの順次電化計画のため電化委員会が設けられ、蒸気運転の状態において電気と蒸気の経済比較の結果、直流1,500Vでも十分電化運転が有利で、交流なら(地上設備を減らせるので)なお有利となった[注釈 27]。1950年代以降、多くの路線が電化されていき、東海道本線については1956年(昭和31年)11月19日、米原 - 京都間を最後に、支線を除く全線電化が完了した。これを記念し、1964年(昭和39年)に鉄道電化協会がこの日(11月19日)を「鉄道電化の日」に制定した(→日本の鉄道史・1956年11月19日国鉄ダイヤ改正も参照)。
また、直流饋電は多くの地上設備が必要でありコスト高となるため、電化が遅れていた東北、北陸、九州、北海道の電化を今後進めることも見越して、1954年(昭和29年)から仙山線で商用周波数による交流電化の試験が開始され、1957年には同じく交流電化試験を行った北陸本線と共に、仙台 - 作並間 (50 Hz) と、田村 - 敦賀間 (60 Hz) での営業運転が始まる[1]など実用化され、その後北海道・関東の太平洋側と東北・北陸(新潟周辺除外)・九州等に広がった[注釈 28]。戦後の電化は東海道本線を皮切りに、山陰地方を除く本州と九州で進められて行ったが、一方で北海道と四国の電化区間は短区間に留まった。特に四国では国鉄時代は国鉄分割民営化直前に本四備讃線開業に合わせて香川県内の一部区間で実施されたに過ぎない。 分割民営化後も引き続き電化区間の延長が実施されているが、内燃動車の性能向上及びハイブリッド気動車や電気式気動車の発達で必ずしも電化の必要はなくなっているほか、蓄電池電車のバッテリー大容量化による航続距離伸展のため駅構内のみ電化されるケースも起きている。2018年現在、JRの在来線は北海道、東北、北陸、九州を中心に交流2万V(海峡線は交流2万5千V)饋電が行われているほかは直流1500V饋電、新幹線は全て交流2万5千Vである[1]。
輸送量の多い都市圏では電化進捗率が高く、都府県単位では既に全旅客線が電化された地域もある。しかし、電化工事には変電所の増設や架線設備の設置をはじめ、歴史が古く建築限界が小さい区間ではトンネル改修を要する等多額の費用が掛かる。そのため国鉄では、大都市近郊や都市間路線でも非電化の路線が長らくそのままにされていた。特に並走する私鉄がある区間では近距離輸送でも積極的な競争を行わないため、比較すると旧態依然としていたほか、電化した路線でも特急列車以外は内燃動車を継続して用いる例が見られる等、消極的な経営が批判されることもあった。もっとも、民営化と前後して大都市近郊の路線電化も少し行われた。
一方、閑散路線でも急勾配路線は高速化のため電化することがあった。しかし財政難等から北海道・四国の主要幹線や宗谷本線[注釈 29]・高山本線などでは国鉄時代に工事が中止された。その後気動車の性能が電車並に向上し、電化するよりも新製気動車を購入する方が低廉となったため、これらの路線では非電化のまま路線の高速化工事を実施し、出力を強化した気動車を投入して近代化を進めている[注釈 30]。また、沿線地方自治体が費用を負担した一部路線で、簡易方式による電化が行われた例もある[注釈 31]。
参考
旅客需要差から、一部区間のみが電化された路線もある。この殆どは運転系統が分断されるため、別路線のようになっている(交流・直流のデッドセクションを挟む場合も同様)が、大井川鐵道井川線のように一部の急勾配区間用に電化している場合は電化区間で補機が付くのみで非電化用車両で全線を走破する運行をしているケースもある。
電化・非電化が混在する路線の中には、可部線や札沼線のように電化区間を残して非電化区間のみが廃止された例もある。江差線も海峡線と一体化している電化区間を残して非電化区間のみが廃止された。
以下に電化区間を記す。太字になっている駅は電化・非電化の境界となっているものである。なお、入出庫用に電化された区間は除く。
電化は初期投資を要するが、輸送量の大きい路線では輸送単位当たりの維持費用は一般に低い。このため、一度電化が行われた路線の電化設備が撤去されることはまれであるが、電化当初に見込んでいた利用がなくなった路線など、気動車等の発展によって電化が必ずしも経済的に有利でないケースが生じることがある。
また、急勾配や長大トンネルでの蒸気機関車の煙対策のために電化していた路線の場合、強力なディーゼルエンジンと換気装置が登場することで代替されることがあり、アメリカのグレート・ノーザン鉄道(現・BNSF鉄道)が建設したカスケード山脈越えの路線(カスケードトンネル)は蒸気機関車時代に電化されていたが、このような理由からディーゼル化が行われている。
このほかには、アメリカ等のインターアーバンが貨物鉄道に転換された際、電車による頻発運転の旅客列車消滅により電化が不要になり、電化設備が撤去された事例も多い。
また、上記の理由以外で設備が撤去された例としては、運用される電気機関車を含めた従来からの直流電化設備全般の老朽化による設備更新を行わずに、高性能のディーゼル機関車へ置換えるといったものが挙げられる。例えば、ブラジルサンパウロ州には急勾配区間と近郊鉄道が運行される区間を除いたほぼ全電化区間の電気設備が撤去され、再び非電化となった路線が複数存在するほか、同様の例はチリのサンティアゴ - バルパライソの郊外間や、コンセプシオン郊外 - テムコ間等にも存在する。
緊急的な電化解除(意図的に行ったもの)では第一次世界大戦時のドイツで資源不足になり、電化鉄道の架線を撤去して銅を使用した結果、電気機関車が走れなくなったというケースもある[37]。
日本での事例としては、以下の路線で経費節減のために電車・電気機関車を気動車に置き換えた事例がある。
下記の路線は電化施設を撤去または使用中止し、電車・電気機関車運行を中止した路線である。ほとんどは元々不採算路線だったため、大半はのちに廃線となっている。
下記の路線は電化設備を有し、特急列車・貨物列車は電車・電気機関車牽引で運行されるが、普通列車は全列車気動車で運行される(または過去に運行されていた)路線である。必ずしも経費節減が目的ではないことに留意されたい。
交流電化に対応した旅客電車は2両編成以上のものしか存在しないため、1両でも運転できるように気動車を導入している場合がある。
電化路線における気動車列車は架線下DC(DC=ディーゼルカー)とも呼ばれる[39]。
下記の路線は、電化施設を存置しながらも、経費節減を目的に気動車列車と電車列車が混在していた路線である。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.