proteína máis abundante nos animais From Wikipedia, the free encyclopedia
Coláxeno[1] é a denominación dun grupo de proteínas animais, que abundan especialmente na carne e tecido conectivo dos vertebrados.[2] É o principal compoñente do tecido conectivo, e é a proteína máis abundante nos animais,[3] xa que supón aproximadamente entre o 25% e o 35% do total das proteínas corporais. O coláxeno, en forma de fibrilas alongadas, é abundante nos tecidos fibrosos como tendóns, ligamentos e pel, e tamén na córnea, cartilaxe, óso, vasos sanguíneos, intestinos, discos intervertebrais etc. No tecido muscular o coláxeno é un dos principais compoñentes do endomisio. O coláxeno constitúe o 1 ou 2 % do tecido muscular, e supón o 6% do peso dos músculos tendinosos fortes (pero non ten nada que ver coas proteínas que causan a contracción muscular, actina e miosina).[4]
Os coláxenos máis abundantes son os que forman fibras, pero tamén os hai que forman mallas ou conexións entre moléculas da matriz extracelular.
A principal célula que fabrica coláxeno é o fibroblasto. A xelatina, que se usa na alimentación e na industria, está feita de coláxeno irreversiblemente hidrolizado.
As fibras de coláxeno son os principais compoñentes da matriz extracelular, pero o coláxeno tamén se atopa no interior de certas células. O coláxeno ten unha gran forza tensil, e é un dos principais compoñentes das fascias, cartilaxes, ligamentos, tendóns, ósos e pel e endomisio muscular.[5][6] Xunto coa queratina, é responsable da elasticidade e resistencia da pel humana, e a súa degradación orixina as engurras que se producen a medida que envellecemos.[7][8] Dálle resistencia aos vasos sanguíneos e xoga un papel no desenvolvemento dos tecidos. Está presente na córnea e cristalino do ollo.
En histoloxía hai unha serie de tinguiduras que serven para poñer de manifesto o coláxeno nas preparacións, como a hematoxilina-eosina (tínguese de rosa), o violeta de metilo, o azul de metilo, o tricrómico de Masson ou marcaxes inmunohistoquímicas.
Para coñecer as estruturas moleculares e o empaquetado do coláxeno necesitáronse décadas de investigación. A primeira evidencia de que esta proteína posuía unha estrutura regular a nivel molecular presentouse na década de 1930.[9][10] Desde entón, moitos destacados investigadores, incluíndo premios Nobel como Francis Crick, Linus Pauling, Alexander Rich e Ada Yonath, e outros como Barbara Brodsky, Helen M. Berman, e G. Ramachandran, concentráronse na dilucidación da conformación do monómero do coláxeno. Presentáronse varios modelos alternativos, que, aínda que trataban correctamente a conformación de só cadea peptídica individualizada, deron lugar ao modelo de tripla hélice "de Madrás", que proporcionou un modelo esencialmente correcto da estrutura cuaternaria da molécula,[11][12][13], pero que aínda requiría un maior refinamento.[14][15][16][17] A estrutura empaquetada do coláxeno non foi definida co mesmo grao para os tipos de coláxeno non fibrilares, aínda que se cre que é hexagonal ou case hexagonal.[18][19][20] Igual que coa súa estrutura monomérica, varios modelos alternativos consideran que ou ben o empaquetamento das moléculas de coláxeno é de tipo similar ao laminar ou é microfibrilar.[21][22] A estrutura microfibrilar das fibrilas de coláxeno no tendón, córnea e cartilaxe foi visualizada con microscopio electrónico.[23][24][25] En 2006, a estrutura microfibrillar do tendón adulto, descrita por Fraser, Miller, e Wess entre outros, foi confirmada como a máis próxima á estrutura observada, aínda que era demasiado simplificada e non predicía as conformacións correctas das microfibrilas.[26] Desenvolvéronse varios axentes que establecen enlaces cruzados como a dopaquinona, embelina, embelato de potasio e 5-O-metil embelina como axentes potenciais de entrelazamento/estabilización das preparacións de coláxeno e foron melloradas as súas aplicacións para envolver feridas en aplicacións clínicas.[27]
O coláxeno forma unha tripla hélice, que xeralmente consta de dúas cadeas idénticas (α1) e unha cadea adicional que difire lixeiramente na súa composición química (α2).[28] A composición en aminoácidos do coláxeno non é a típica das proteínas, especialmente con respecto ao seu alto contido en hidroxiprolina. Os motivos máis comúns na secuencia de aminoácidos do coláxeno son Glicina-Prolina-X e Glicina-X-Hidroxiprolina, onde X é calquera aminoácido distinto da glicina, prolina e hidroxiprolina. A glicina é abundante. Tamén ten algo de hidroxilisina. A composición media en aminoácidos do coláxeno das peles dos peixes e dos mamíferos é a que se indica na táboa:[28]
A síntese de coláxeno é complexa. A síntese empeza no citosol, continúa no retículo endoplasmático e aparato de Golgi e acaba fóra da célula. O primeiro que ocorre é se forman as cadeas alfa, que despois sofren unha serie de hidroxilacións, glicosilacións, e asócianse nunha tripla hélice, que é o procoláxeno. O procoláxeno é modificado e orixina o tropocoláxeno, e moitas moléculas deste ensámblanse entre si unha detrás da outra e paralelamente formando as fibrilas de coláxeno.[29]
Estas reaccións de hidroxilación están catalizadas por dous encimas: prolil-4-hidroxilase e lisil-hidroxilase. A vitamina C tamén actúa aquí inducindo estas reaccións. Consómese unha molécula de vitamina C cada vez que se substitúe un H por un OH. [30]
A formación do coláxeno dando lugar a coláxeno fibrilar (a forma máis común) é a que se discutirá aquí. O coláxeno reticular, que está a miúdo implicado na formación de sistemas de filtración é a outra forma de coláxeno. Todos os tipos de coláxeno son triplas hélices, e as diferenzas entre eles débense á modificación dos péptidos alfa formados.
Podemos resumir todos os pasos da síntese do coláxeno así:
O tropocoláxeno ou molécula de coláxeno é unha subunidade dos agregados de coláxeno máis grandes como as fibrilas. De aproximadamente 300 nm de longo e 1,5 nm de diámetro, está feito de tres cadeas polipeptídicas, chamadas péptidos alfa (ver paso 2), cada un dos cales ten a conformación dunha hélice levoxira (o seu nome non debe levar a confusión coa común estrutura secundaria das proteínas en hélice alfa, que é dextroxira). Estas tres hélices que xiran á esquerda están enroscadas entre si formando unha hélice superenrolada dextroxira, que é a tripla hélice ou "superhélice", unha estrutura cuaternaria cooperativa estabilizada por numerosas pontes de hidróxeno. No coláxeno de tipo I e posiblemente en todos os coláxenos fibrilares e talvez tamén nos non fibrilares, cada tripla hélice está asociada formando un supersuperenrolamento dextroxiro denominado microfibrila de coláxeno. Cada microfibrila está interdixitada coas microfibrilas veciñas en tal grao que fai pensar que son individualmente inestables, aínda que en conxunto, formando fibrilas de coláxeno, están tan ben ordenadas que son cristalinas.
Unha característica distintiva do coláxeno é a disposición regular dos aminoácidos en cada unha das tres cadeas destas subunidades de coláxeno. O patrón máis frecuente é Gly-Pro-X ou Gly-X-Hyp, onde X pode ser calquera outro aminoácido distinto.[28] A prolina ou hidroxiprolina constitúen arredor de 1/6 da secuencia total. Como a glicina supón 1/3 da secuencia, aproximadamente a metade da secuencia do coláxeno non está formada por glicina, prolina ou hidroxiprolina. O alto contido en glicina do coláxeno é importante para a estabilización da hélice de coláxeno, xa que permite unha asociación moi próxima das fibras de coláxeno na molécula, facilitando a formación de pontes de hidróxeno e de enlaces cruzados intermoleculares.[28] Este tipo de repetición molecular e alto contido en glicina só se atopa nunhas poucas proteínas fibrosas, como a fibroína da seda. Arredor do 75-80% da seda é (aproximadamente) -Gly-Ala-Gly-Ala- cun 10% de serina, e a proteína elastina é rica en glicina, prolina, e alanina (Ala), aminoácido que ten unha pequena cadea lateral formada por un grupo metilo non reactivo. Esta cantidade tan elevada de glicina e as repeticións regulares nunca se observan en proteínas globulares a non ser en curtas seccións da súa secuencia. Os grupos laterais reactivos non son necesarios nas proteínas estruturais (en encimas e proteínas de transporte si), pero o coláxeno non é simplemente unha proteína estrutural. Debido ao seu papel chave na determinación do fenotipo da célula, adhesión celular, regulación e estrutura dos tecidos, moitas seccións das súas rexións non ricas en prolina teñen funcións na asociación/regulación da matriz ou a célula. O seu relativamente alto contido en aneis de prolina e hidroxiprolina, e os seus grupos carboxilo e amino (secundarios) restrinxidos xeometricamente, xunto coa grande abundancia de glicina, explican a tendencia de cada cadea polipeptídica individual a formar espontaneamente hélices levoxiras, sen pontes de hidróxeno intracatenarias.
Como a glicina é o aminoácido máis pequeno e sen cadea lateral significativa (só un H), ten unha grande importancia nas proteínas fibrosas estruturais. No coláxeno, a Gly requírese en todas as terceiras posicións porque a ensamblaxe da tripla hélice coloca este residuo no interior (eixe) da hélice, onde non hai espazo para unha cadea lateral máis grande có único átomo de hidróxeno que ten a glicina. Pola mesma razón, os aneis da Pro e Hyp deben orientarse cara ao exterior. Estes dous aminoácidos axudan a estabilizar a tripla hélice, e a Hyp incluso máis cá Pro. Noutros animais como os peixes, con temperaturas corporais menores cós de sangue quente, requírese unha menor concentración destes aminoácidos. Menores contidos en prolina e hidroxiprolina son característicos dos peixes de augas frías, pero non nos de augas quentes ; estes últimos adoitan a ter contidos en prolina e hidroxiprolina similares aos dos mamíferos.[28] Os baixos contidos nestes dous aminoácidos dos peixes de augas frías e noutros animais poiquilotermos fai que os seus coláxenos teñan unha menor estabilidade térmica cós coláxenos de mamíferos.[28] Esta menor estabilidade térmica significa que a xelatina derivada do coláxeno de peixes non é a máis axeitada para a súa aplicación en moitos alimentos e usos industriais.
As subunidades do tropocoláxeno autoensámblanse espontaneamente, con extremos regularmente escalonados, en maiores formacións nos espazos extracelulares dos tecidos.[31][32] Nos coláxenos fibrilares, as moléculas sobresaen unhas das outras uns 67 nm (unha distancia que se denomina ‘D’ e cambia segundo o estado de hidratación do agregado). Cada período D contén catro moléculas de coláxeno e unha fracción máis, porque 300 nm (a lonxitude da molécula de coláxeno) divido entre 67 nm (a distancia D) non dá exacto. Por tanto, en cada período D dunha microfibrila, hai unha parte que contén cinco moléculas en sección transversal, o que se denomina "solapamento", e outra parte que contén só catro moléculas, chamada o "espazado" (gap).[26] As hélices triplas están tamén colocadas nunha disposición hexagonal ou cuasihexagonal en sección transversal, tanto nas rexións de "solapamento" coma nas de "espazado".[18][26]
Existe tamén algunha ligazón covalente nas triplas hélices, e unha cantidade variable entre as hélices de tropocoláxeno, formando agregados ben organizados (como as fibrilas).[33] Fórmanse feixes fibrilares máis grandes coa axuda de varias clases de proteínas (incluíndo distintos tipos de coláxeno), glicoproteínas e proteoglicanos que forman os diferentes tipos de tecidos maduros alternando as combinacións destas moléculas.[32] A insolubilidade do coláxeno supuxo unha barreira para o estudo do coláxeno monomérico ata que se descubriu que se podía extraer o coláxeno dos animais máis novos, porque non formou aínda todos os enlaces entrecruzados. Porén, os avances nas técnicas de microscopia electrónica e de forza atómica e na difracción de raios X permitiron aos investigadores obter imaxes cada vez máis detalladas da estrutura do coláxeno in situ. Estes últimos avances son especialmente importantes para mellorar a comprensión do modo en que a estrutura do coláxeno afecta á comunicación célula-célula e célula-matriz, e de como se constrúen os tecidos durante o seu crecemento e reparación, e durante os cambios que experimentan no desenvolvemento e enfermidades.[34][35] Por exemplo utilizando o microscopio de forza atómica viuse que unha fibrila de coláxeno soa é un material heteroxéneo ao longo da súa dirección axial con propiedades mecánicas significativamente diferentes nas súas rexións de "solapamento" e "espazado", que están correlacionadas coas súas diferentes organizacións moleculares nestas dúas rexións.[36]
As fibrilas de coláxeno son agregados semicristalinos de moléculas de coláxeno. As fibras de coláxeno son feixes de fibrilas.
As fibrilas/agregados de coláxeno están dispostas en diferentes combinacións e concentracións nos distintos tecidos proporcionando propiedades distintas a cada tecido. No tecido óseo todas as triplas hélices de coláxeno dispóñense en paralelo escalonadamente. Hai espazos de 40 nm entre os extremos das subunidades de tropocoláxeno (aproximadamente igual á rexión de "espazado") que probablemente serven como sitios de nucleación para a deposición de cristais longos, duros e finos do compoñente mineral, que é (aproximadamente) C6H12O6 con algúns fosfatos. Deste modo é como algunhas formas de cartilaxe se converten en óso. O coláxeno tipo I dálle ao óso a súa forza tensional.
O coláxeno aparece en moitas partes do corpo. Dos varios tipos de coláxeno que hai, un 90% do coláxeno corporal é do tipo I.[37]
Ata agora, describíronse 28 tipos de coláxeno. Os cinco máis comúns son:
As enfermidades relacionadas co coláxeno orixínanse normalmente debido a defectos xenéticos ou deficiencias nutricionais que afectan á biosíntese, ensamblaxe, modificacións postraducionais, secreción, ou outros procesos implicados na produción normal do coláxeno. No escleroderma ten lugar unha excesiva deposición de coláxeno.
Tipo | Notas | Xene(s) | Trastornos |
I | É o máis abundante no corpo humano. Presente no tecido de cicatrización. Atopado nos tendóns, pel, parede arterial, córnea, o endomisio muscular, fibrocartilaxe, e a parte orgánica dos ósos e dentes. | COL1A1, COL1A2 | Osteoxénese imperfecta, síndrome de Ehlers–Danlos, hiperostose cortical infantil (ou enfermidade de Caffey) |
II | Cartilaxe hialina, forma o 50% de todas as proteínas da cartilaxe. Humor vítreo do ollo. | COL2A1 | Colaxenopatía, tipos II e XI |
III | É o coláxeno do tecido de granulación, e prodúcese rapidamente polos fibroblastos novos antes de que se empece a sintetizar o coláxeno máis rexo de tipo I. Fibra reticular. Tamén se encontra nas paredes arteriais, pel, intestinos e útero | COL3A1 | síndrome de Ehlers–Danlos, contractura de Dupuytren |
IV | Lámina basal; cristalino do ollo. Tamén serve como parte do sistema de filtración nos capilares e nos glomérulos dos nefróns dos riles. | COL4A1, COL4A2, COL4A3, COL4A4, COL4A5, COL4A6 | síndrome de Alport, síndrome de Goodpasture |
V | Na maioría dos tecidos intersticiais, asociado co de tipo I, asociado coa placenta | COL5A1, COL5A2, COL5A3 | síndrome de Ehlers–Danlos (clásico) |
VI | Na maioría do tecido intersticial, asociado co de tipo I | COL6A1, COL6A2, COL6A3, COL6A5 | miopatía de Ulrich, miopatía de Bethlem, dermatite atópica [38] |
VII | Forma as fibriñas de ancoraxe nas unións dermoepidérmicas | COL7A1 | Epidermólise ampolosa distrófica |
VIII | Algunhas células endoteliais | COL8A1, COL8A2 | distrofia corneal polimórfica posterior 2 |
IX | Coláxeno FACIT (Fibril Associated Collagens with Interrupted Triple helices, Coláxeno Asociado ás Fibrilas con Triplas hélices Interrompidas), cartilaxe, asociado coas fibrilas de tipo II e XI | COL9A1, COL9A2, COL9A3 | EDM2 e EDM3 |
X | Hipertrófico e cartilaxe de mineralización | COL10A1 | displasia metafisal de Schmid |
XI | Cartilaxe | COL11A1, COL11A2 | Colaxenopatía, tipos II e XI |
XII | Coláxeno FACIT, interacciona coas fibrilas que conteñen coláxeno de tipo I, decorina e glicosaminoglicanos | COL12A1 | – |
XIII | Coláxeno transmembrana, interacciona coa integrina a1b1, fibronectina e compoñentes das membranas basais como o nidóxeno e o perlecán. | COL13A1 | – |
XIV | Coláxeno FACIT | COL14A1 | – |
XV | – | COL15A1 | – |
XVI | – | COL16A1 | – |
XVII | Coláxeno transmembrana, tamén coñecido como BP180, unha proteína de 180 kDa | COL17A1 | penfigoide bulloso e certas formas de epidermólise ampolosa xuncional |
XVIII | Fonte de endostatina | COL18A1 | – |
XIX | Coláxeno FACIT | COL19A1 | – |
XX | – | COL20A1 | – |
XXI | Coláxeno FACIT | COL21A1 | – |
XXII | – | COL22A1 | – |
XXIII | Coláxeno MACIT | COL23A1 | – |
XXIV | – | COL24A1 | – |
XXV | – | COL25A1 | – |
XXVI | – | EMID2 | – |
XXVII | – | COL27A1 | – |
XXVIII | – | COL28A1 | – |
O coláxeno ten multitude de aplicacións, desde alimentarias a médicas. Por exemplo, utilízase na cirurxía plástica e na cirurxía de queimaduras, ou como cuberta das salsichas.
Se o coláxeno está desnaturalizado dabondo, por exemplo, quentándoo, as tres cadeas de tropocoláxeno sepáranse parcial ou completamente en dominios globulares, que conteñen unha estrutura secundaria diferente da normal; por exemplo, enrolamentos aleatorios. Este proceso describe a formación de xelatina, utilizada en moitos alimentos, e mesmo en xelatinas de sobremesa aromatizadas. Ademais de en alimentos, a xelatina utilízase na industria farmacéutica, cosmética e fotografía.[46] Desde un punto de vista nutricional, o coláxeno e a xelatina son como fonte única proteína de baixa calidade, xa que non conteñen todos os aminoácidos esenciais nas proporcións que o corpo humano require (non son proteínas "completas" desde un punto de vista nutricional). Os fabricantes de suplementos dietéticos baseados no coláxeno afirman que os seus produtos poden mellorar o estado da pel, as uñas e articulacións.[47]
O termo grego kolla é a raíz de onde vén a palabra coláxeno, que significa "produtor de cola", referíndose ao antigo proceso de ferver a pel e tendóns de cabalos e outros animais para obter cola. Un adhesivo a base de coláxeno xa se utilizaba hai 4.000 anos en Exipto. A cola máis antiga coñecida datada por radiocarbono como de hai 8.000 anos, é coláxeno utilizado como cuberta protectora para as cordas de cestos e tecidos bordados, para colar obxectos; e en decoracións de cranios humanos.[48] O coláxeno normalmente convértese en xelatina, pero presérvase se as condicións do enterramento son secas.
As colas animais son termoplásticas, poden abrandarse de novo ao volver a quentalas, e aínda se usan para facer instrumentos musicais como violíns e guitarras de calidade, que poden ter que ser abertos para a súa reparación, o que sería imposible usando unha cola máis firme feita con adhesivos plásticos sintéticos, que son permanentes.
A cola xelatina-resorcinol-formaldehido (ou con pentanedial e etanedial substituíndo ao máis tóxico formaldehido) foi utilizada para reparar incisións experimentais en pulmóns de coellos, na procura dunha cola cirúrxica eficaz e biocompatible.[49]
Segundo un estudo publicado na revista Science[50], a administración oral de coláxeno tipo II mellora os síntomas da artrite reumatoide. Os autores realizaron un ensaio aleatorio de dobre cego en 60 pacientes con artrite reumatoide activa severa, e observouse unha diminución na inflamación das articulacións nos suxeitos que foron alimentados con coláxeno tipo II de polo durante 3 meses, pero non nos que recibiron placebo.
O coláxeno foi moi utilizado en cirurxía plástica ou cosmética, como axuda para a curación de pacientes queimados, para a reconstrución de ósos e outros propósitos odontolóxicos, ortopédicos e cirúrxicos. O coláxeno humano e bovino é amplamente utilizado como recheo dérmico para o tratamento das engurras e da pel envellecida.[8] Algúns puntos de interese son:
Os coláxenos son moi empregados na construción de substitutos de pel artificial utilizados para o tratamento de queimaduras moi graves. Estes coláxenos poden ser de orixe bovina, equina, porcina, ou humana e úsanse ás veces en combinación con siliconas, glicosaminoglicanos, fibroblastos, factores de crecemento e outras substancias.
Aínda que non se pode absorber pola pel, o coláxeno utilízase como ingrediente nalgúns produtos cosméticos de maquillaxe.
O coláxeno utilízase tamén en aplicacións para a investigación científica nos cultivos celulares, que estudan o comportamento celular e as interaccións co medio extracelular.[51]
O coláxeno é un dos compoñentes principais da pel e é beneficioso para a curación das feridas. Cando o corpo dispón de coláxeno na zona da ferida, esta pode pecharse. Existen apósitos con coláxeno que favorecen a curación. As fibras de coláxeno serven para guiar aos fibroblastos, que migran ao longo da matriz do tecido conectivo. O coláxeno, en presenza de certos sales neutros pode actuar como axente nucleante causando a formación de estruturas fibrilares.
Como a síntese de coláxeno require un gran nivel de osíxeno atmosférico, os animais complexos non puideron evolucionar ata que a atmosfera tivo osíxeno suficiente para sintetizar substancias como o coláxeno.[52] Unha vez que se orixinou o coláxeno puido evolucionar a formación de cutículas, cunchas e músculo. Os tecidos conxuntivos teñen unha base de coláxeno. Porén, a preservación do coláxeno no rexistro fósil é moi escasa.[53] Hai evidencias (controvertidas) sobre a preservación do coláxeno de dinosauros de 80 millóns de anos de antigüidade.[54] Tamén se poden mencionar as actinofibrilas, fibras de coláxeno presentes nas ás de pterosauros.
O coláxeno extráese correntemente dos ósos de animais prehistóricos para usalo para a datación por radiocarbono e a análise dos isótopos estables. A integridade da molécula pode avaliarse con varias medicións (rendemento de coláxeno, proporción C:N, %C e %N).[28] Con respecto ás datacións radiométricas, o coláxeno extraído produce unha forma "máis pura" de carbono có datado dos ósos, que conteñen unha gran cantidade de apatita carbonatada que distorsiona as medicións. A análise de isótopos estables do carbono e nitróxeno úsanse comunmente para estudar a dieta de poboacións humanas antigas, e para reconstruír as condicións ecolóxcias nas que vivían.
O artista xermano-americano Julian Voss-Andreae creou esculturas baseadas na estrutura do coláxeno e outras proteínas.[55][56][57]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.