Loading AI tools
大気の温度 ウィキペディアから
「気温」だけを表す単語は日本語や中国語など一部の言語[注 1]にしかなく、英語では「温度」を表すTemperatureが気温の意味で代用され、厳密に「気温」を表す場合はAir temperatureやAtmospheric temperatureなどが使用されている。
天気や気候について考えるときの気温は「地上の気温」である。気温は温度計により測定するが、構造や測定値の特性が異なるいくつかの種類の温度計が存在するため、測定値を利用する際に留意する必要がある。地上の気温の測定方法は世界気象機関(WMO)により規定されており、地上から1.25〜2.0mの高さで、温度計を直接外気に当てないようにして測定することと定められている。なお日本では、気象庁が測定高さを1.5mと定めている[1]。
ふつう、上記の測定方法を満たすため、温度計や同じような測定環境が求められる湿度計は、ファン付きの通風筒や百葉箱に入れられる[1]。
温度計が雨の侵入や結露によって濡れたり、雪の侵入や霜によって凍結したりすると、水の蒸発や融解による潜熱吸収の作用で温度が低下し、誤差の原因となる。また、太陽光が直接当たったり、温度計の周りの空気の流れが滞ったりすると、本来の周囲の気温以上に温度が上昇し、これも誤差の原因となる。これを防ぐために、通風筒や百葉箱は雨・雪が侵入しにくい構造になっており、通風筒ではファンにより強制的に、百葉箱では風を通しやすい構造により換気を行っている。なお、ファンの発熱の影響を少なくするため、通風筒内では外気の出口にファンを設ける構造が適切とされている[1]。
温度計を納めた通風筒や百葉箱の設置環境としては、本来の周囲の気温に近づけるために周囲の風通しが良いこと、日陰になって必要以上に低温にならないために周囲の一定範囲内に樹木や構造物などが無いこと、加熱により必要以上に高温にならないように周囲に熱源となるものが無いことなどが望まれる。気象庁の「気象観測の手引き」では、開けた平らな土地で、かつ近くに木々や建物などの他の障害物のない場所で行うことと定められており、急な傾斜地の上や窪地の中は避けるべきだが、やむを得ず設置する場合は周囲の気温と比較して特性を把握しておくべきとされている。また、通風筒や百葉箱の下の地面(露場)は、丈の短い芝生が最も望ましく、難しければ周辺と同じ土壌でもよいが、雑草の繁茂を防ぐ管理上の理由から人工芝も認められている。一方、照り返しの強いアスファルトなどは不適当とされている。露場の面積は広ければ広いほど良いとされるが、気象庁のアメダス観測所ではおおむね70m2以上の露場が確保されている[1]。
気象予報に利用するため、上空の気温の観測も行われている。定時・定点の観測として、ゴム気球に温度センサを取りつけて空に放つラジオゾンデが最もよく用いられている。ラジオゾンデは対流圏を通過し成層圏内の上空30km程度まで到達する。また、航空機も随時・定時に気温の観測を行い、航空気象に利用されている。
また、世界気象機関のほか、日本をはじめとした多くの地域では気温を摂氏(°C)で表すが、アメリカ合衆国では伝統的に華氏(°F)で表すことが多い。
気温はふつう一定の間隔で連続的に観測される。このデータの中で、1日や1年など一定期間における、最も高い気温を最高気温、最も低い気温を最低気温と言う。一般的には単に「最高気温」「最低気温」という場合、天気予報において良く使われることから、1日の最高気温や最低気温を指すことが多い。また、一定期間における平均の気温を平均気温と言う。
気温の統計では、その測定間隔に注意する必要がある。SYNOPは3時間ごと、MATERは1時間ごとの測定(通報)であるため、これらのデータを用いた平均気温は、日平均気温であれば8回や24回の平均となる。この間隔は技術革新により次第に短くなってきており、アメダスの例を挙げれば2002年までは1時間ごと、2008年までは10分ごと、2008年以降は10秒ごとと改良されている。これにより誤差が出る事も分かっている。平均すると、1時間ごとの最高気温は0.5℃、10分ごとの最高気温は0.2℃、それぞれ現在よりも低い値であるほか、1時間ごとの最低気温は0.2℃、10分ごとの最低気温は0.1℃、それぞれ現在よりも高い値であると報告されている[2]。
気温は気候を構成する要素の1つでもある。地球規模で見ると、気温は緯度との相関性が最も顕著に表れ、緯度が高いほど気温は低い。右図においても、年平均気温が同じ同色の領域は、緯線に平行な帯状に分布している。これに次ぐ因子は標高や海流である。右図では、標高が高いアジア中部のヒマラヤ山脈・チベット高原や南アメリカ西岸のアンデス山脈が黄色や水色で表示され、同緯度よりも寒いことが分かる。また、強い暖流のある北大西洋やヨーロッパは黄色や水色の領域が周囲よりも北側に大きくはみ出しており、同緯度よりも暖かいことが分かる。また、北極よりも南極の方が気温が低く表示されているが、これは北極は海洋であるのに対して、南極は大陸で厚い氷床により標高が高いためである。年平均値や極値では北極よりも南極の方が寒い。
また、夏と冬の気温の差(最暖月と最寒月の気温差)は、低緯度地域より高緯度地域、海洋部より大陸部の方が大きい。世界の観測所で最も月平均気温の差が大きい場所はロシア・シベリアのオイミャコンで、1971年 - 2000年の平年値で実に60.2°Cにもなる(1月が−45.9°C、7月が14.3°C)。
こうした気温の特性のほか、降水などの特徴を総合的に勘案して気候を分類した、気候区分が作られている。
ある地点における気温は1年周期の季節変化や1日周期の日変化だけではなく、日々の天候や、数年かそれ以上の規模での気候変動により変化する。主なものとしては、いわゆる氷期と呼ばれる寒冷期とそうでない温暖期(間氷期)が交互に繰り返す変動が知られており、更新世の約250万年間には数万年-十数万年周期でこの変動が起こったと推定されている。現在は「後氷期」と呼ばれる温暖期にあるが、その間にもさらに短周期の亜氷期(寒冷期)と亜間氷期(温暖期)を繰り返す変動も知られている。紀元前500年頃から現在までは「サブアトランティック」(英語版)と呼ばれる温暖期にあり、その間にもさらに中世の温暖期(IPCC AR4によるとヨーロッパに限られた温暖期)や小氷期(IPCC AR4によると平均気温の低下が1度未満の弱い寒冷期)と呼ばれる短周期の変動が知られている。
なお、特に19世紀半ばの産業革命以降は地球規模で気温が上昇していることが分かっている(地球温暖化)。例えば、100年間余りのデータがある日本の年平均気温は上昇傾向にあり、平年差が最も大きかった年は1990年の+1.04°Cで、次いで2004年の+1.00°Cとなっている。地球温暖化の主な原因は人為的な温室効果ガスの排出増加とされ、気候変動枠組条約や京都議定書などの国際的枠組みを設けて対策が行われている。
2019年2月6日、世界気象機関(WMO)は、2015年から4年間の世界の気温が観測史上最高だったことを確認した。また、2018年の世界の平均気温が産業革命前比で1度上昇し、過去4番目に高かったと発表した。2015年から4年連続で異例の高温が続き、上昇傾向が続き地球温暖化が進行している証拠だとしている。WMOによると、2016年の平均気温の上昇幅は1.2度で観測史上最高を記録した。WMOのペッテリ・ターラス(Petteri Taalas)事務局長は、単年の記録の上位20位が過去22年間に集中しており、「長期的な気温の傾向は単年の順位よりもはるかに重要であり、長期傾向は上昇を示している」とした上で、「過去4年間の気温上昇は陸上と海面の双方で異常な水準にある」と述べた。ハリケーンや干ばつ、洪水といった異常気象の要因にもなったと指摘している[4][5]。
大陸 | 最高気温 | 最低気温 | ||
---|---|---|---|---|
アジア | 54.0°C(129.2°F) クウェート Mitribah 2016年7月21日 |
−67.8°C(−90.0°F) ロシア サハ共和国 ベルホヤンスク 1892年2月7日 |
−71.2°C(−96.2°F) ロシア サハ共和国 オイミャコン 1926年1月26日 | |
アフリカ | 55.0°C(131.0°F) チュニジア Kebili 1931年7月7日 |
−24.0°C(−11.0°F) モロッコ Ifrane 1935年2月11日 | ||
ヨーロッパ | 50.0°C(122.0°F) スペイン アンダルシア州 セビリア 1881年8月4日 |
−58.1°C(−72.6°F) ロシア コミ共和国 Ust-Shchuger 1978年12月31日 |
−51.4°C(−60.5°F) ノルウェー フィンマルク県 カラショーク 1886年1月1日 | |
北アメリカ | 56.7°C(134.0°F) アメリカ合衆国 カリフォルニア州 デスヴァレー 1913年7月10日 |
−63.0°C(−81.4°F) カナダ ユーコン準州 Snag 1947年2月3日 |
−66.1°C(−87°F) グリーンランド Northice 1954年1月9日 | |
南アメリカ | 48.9°C(120.0°F) アルゼンチン リバダビア 1905年12月11日 |
−33.0°C(−27.4°F) アルゼンチン チュブ州 Sarmiento 1907年6月1日 | ||
オーストラリア | 53.1°C(128.0°F) オーストラリア クイーンズランド州 Cloncurry 1889年1月16日 |
−23.0°C(−10.4°F) オーストラリア ニューサウスウェールズ州 Charlotte Pass 1994年6月29日 | ||
オセアニア | 42.4°C(108.3°F) ニュージーランド カンタベリー地区 ランギオラ 1973年2月7日 |
−25.6°C(−14.1°F) ニュージーランド Ranfurly 1903年7月18日 | ||
南極 | 14.6°C(58.3°F) バンダ基地 1974年1月5日 |
−89.2°C(−128.6°F) ボストーク基地 1983年7月21日 *−93.2°C ドームA付近 2010年8月10日 | ||
|
最高気温や最低気温のデータとなる気温の観測間隔は、気象台・測候所・特別地域気象観測所では10秒ごと(観測時刻の1分未満の端数は切り上げ)、地域気象観測所では2002年以前は1時間ごと、2003年以降は10分ごとである。2008年3月26日より全国の地域気象観測所が順次10秒ごとの観測となり、気象台等と同様の観測間隔となった[13]。地域気象観測所での気温観測は1994年4月 - 2002年12月でも10分ごとに行われていたが、現時点では、当時の正式な記録は1時間ごとの値となっている。
※を付した観測地点は気象官署、それ以外はアメダスである。
順位 | 気温 | 観測地点 | 起日 |
---|---|---|---|
1位 | -41.0°C | 北海道石狩国上川郡旭川町(現・旭川市)※ | 1902年1月25日 |
2位 | -38.2°C | 北海道河西郡下帯広村(現・帯広市)※ | 1902年1月26日 |
3位 | -38.1°C | 北海道旭川市江丹別 | 1978年2月17日 |
4位 | -38.0°C | 富士山頂※ | 1981年2月27日 |
5位 | -37.9°C | 北海道枝幸郡枝幸町歌登 | 1978年2月17日 |
参考 | -41.5°C | 北海道天塩国中川郡美深町 (区内観測所)[16] |
1931年1月27日 |
-44.0°C | 北海道枝幸郡枝幸村(現・枝幸町)上幌別 (北海道森林気象観測所)[25] | ||
-41.2°C | 北海道雨竜郡幌加内町母子里 (北海道大学雨竜演習林)[16] |
1978年2月17日 |
※を付した観測地点は気象官署、それ以外はアメダスである。
ハーバード大学医学部によると、高温は心臓病のリスクを高める。 気温が高いときは、屋内にとどまり、20分ごとに屋外で水分補給し、フルーツジュースを飲まないこと[32]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.