Remove ads
From Wikipedia, the free encyclopedia
A valószínűségi változó a valószínűségszámítás egyik legfontosabb fogalma. Lényegében olyan jelenségek matematikai megfogalmazására, modellezésére alkalmas, melyek véletlentől függő értéket vesznek fel.[1] Ilyen lehet például egy kockadobás eredménye, egy folyó vízállása vagy az utcán szembe jövő emberek testmagassága. Formálisan, a valószínűségi változó egy kimenetelt jellemez, nem feltétlenül számszerűen.[2] Nem számszerű véletlen változó lehet mozgásirány, permutáció vagy gráf is, vagy akármilyen más matematikai objektum. Egy kimenetelhez különféle valószínűségi változó rendelhető, amit realizációnak, sztochasztikus folyamat esetén útnak neveznek.[3]
Bár a valószínűségi változó szemléletes jelentése viszonylag könnyen megragadható, a precíz matematikai meghatározás a huszadik századig váratott magára, és egészen komoly függvénytani illetve mértékelméleti eszközöket használ fel.
Az valószínűségi mező eseményterén értelmezett valós értékű függvény pontosan akkor valószínűségi változó, ha
A mértékelmélet kifejezéseivel élve ez úgy fogalmazható meg, hogy ha a valószínűségi mezőt mint mértékteret tekintjük, akkor a valószínűségi változók pontosan az A-mérhető függvények.
Tulajdonképp a definíció azt követeli meg, hogy úgy rendeljünk számokat az eseménytér elemeihez – azaz az elemi eseményekhez – hogy az így kapott függvény "jól viselkedjen" a valószínűségi mérték szerinti integrálás szempontjából. Ez a követelmény ahhoz kell, hogy a valószínűségi változó viselkedésének leírásában, vizsgálatában lehessen kamatoztatni a függvénytan olyan eszközeit, mint az integrál- vagy a differenciálszámítás. A definíció egyenes következménye, hogy a valószínűségi változó eloszlásfüggvénye a megszokott módon definiálható.
Általában csak szövegesen adják meg a konkrét adatokat, vagy alapértelmezettnek vesznek néhány dolgot (például: véges esetben szimmetria, az eseményalgebra a hatványhalmaz; folytonos eset: események a Borel-halmazok).
Diszkrét esetben, ha az eseményalgebra a hatványhalmaz, akkor minden függvény mérhető, ezért a mérhetőséggel nem kell foglalkozni. Folytonos esetben azonban már kell a mérhetőséget vizsgálni.
Egyes speciális eseteket mértékelméleti definíció helyett másként is be lehet vezetni.
Valós valószínűségi változók esetén az eseménytér , események a Borel-halmazok. Ezzel az általános definíció így alakul:
Szavakkal, ez azt fejezi ki, hogy azoknak a kimeneteleknek a halmaza, amelyek realizációja egy érték alá esik, esemény.
A példában ilyen a két kockával dobás , és valószínűségi változó.
Egy valószínűségi vektorváltozó egy leképezés, ahol dimenzió. Ekkor koordinátái valószínűségi változók, amelyek ugyanazon az eseménytéren vannak definiálva. Ekkor eloszlása többdimenziós, és az koordináták eloszlása peremeloszlás. A várható érték és a szórásnégyzet (vigyázat, nem szórás!) megfelelői többdimenziós eloszlás esetén a várható értékek vektora és a kovarianciamátrix.
A példában kétdimenziós eloszlású valószínűségi változó.
A valószínűségi vektorváltozók nem tévesztendők össze a valószínűségi vektorral. A valószínűségi vektorok adott esetén elemű halmaz elemei közötti átmenetek valószínűségeit írják le; elemei, minden koordinátájuk pozitív, és összegük 1.
A komplex eset nem különbözik lényegesen a valós kétdimenziós esettől. A képtér , ezen az események a és kanonikus megfeleltetésből adódó Borel-halmazok. komplex valószínűségi változó, ha és is valós valószínűségi változó.
A pénzfeldobást leíró valószínűségi változó valószínűségi mezeje a következő:
Ekkor valószínűségi változó például a következő függvény:
Ez a valószínűségi változó az 1 értéket veszi fel, ha fejet dobunk és a 2 értéket, ha írást.
Hasonlóan a kockadobást leíró valószínűségi változó valószínűségi mezeje a következő:
A kockadobást leíró valószínűségi változót kapunk a következő függvénnyel: olyan, hogy az "egyes dobás" elemi eseményéhez az 1-es számot, a "kettes dobás" elemi eseményéhez a 2-es számot stb. a "hatos dobás" elemi eseményéhez a 6-os számot rendeli.
Ez a valószínűségi változó mindig azt az egész számot veszi fel, amit dobtunk. Azt is lehet látni, hogy ha nem pont az {1, 2, 3, 4, 5, 6} halmaz lenne az értékkészlete X-nek, hanem például a {2, 4, 6, 8, 10, 12} akkor is a kockadobás véletlen kimeneteit modellezné csak más értékekkel.
Két, egymástól megkülönböztethető kockával való dobás modellezhető a következő valószínűségi térrel:
A következőkben az az első, a második kockával dobott szám, pedig az összegük. Ezek definíciója a következő:
ahol a valós számokon értelmezett Borel-algebra.
A valószínűségi változóhoz kapcsolódik a képtéren indukált valószínűségi eloszlás. A két fogalmat szinonímaként is használják. Formálisan, ha valószínűségi változó, akkor eloszlását mint a valószínűség képmértékét értelmezik, azaz
ahol az valószínűségi változó képterében adott σ-algebra is. A jelölés mellett előfordul és is.
Például ha normális eloszlású valószínűségi változóról van szó, akkor azzal egy valós értékű valószínűségi változóra gondolnak, aminek eloszlása egy normális eloszlásnak felel meg.
A valószínűségi tulajdonságok kifejezhetők csak a valószínűségi változók közös eloszlása alapján. Nem szükséges ehhez ismerni a valószínűségi mezőt, amin a valószínűségi változók definiálva vannak.
Gyakran eloszlás- vagy sűrűségfüggvényükkel adják meg a valószínűségi változókat, háttérben hagyva a valószínűségi mezőt. Ez a felfogás megengedett a matematikában, mindaddig, amíg valóban létezik az adott eloszláshoz valószínűségi mező. Azonban a konkrét eloszlás ismeretében konstruálható valószínűségi mező, ahol , a Borel-halmazok σ-algebrája, és az eloszlásfüggvény által generált Lebesgue-Stieltjes-mérték. A valószínűségi változó az identikus leképezés: .[5]
Több, de véges sok valószínűségi változó esetén is elég a közös eloszlásfüggvényt megadni, a valószínűségi mezőt háttérben hagyva. Megszámlálható végtelen sereget megadva elég véges halmazok közös eloszlásfüggvényeit megadni. Maga a valószínűségi mező kevésbé kérdéses, mint az, hogy létezik-e közös valószínűségi mező megszámlálható végtelen esetben. Független esetben a kérdést Émile Borel oldotta meg, az egységintervallum és a Lebesgue-mérték felhasználásával. Egy lehetséges bizonyítás a kettes számrendszerben írt számok kettedesjegyeit egymásba skatulyázott Bernoulli-folyamatoknak tekinti (a Hilbert-hotelhez hasonlóan).[6]
Az eloszlás a valószínűségi változó egyik legfontosabb függvénye, ami arról tájékoztat, hogy az milyen értéket milyen valószínűséggel vesz fel, vagy hogy egy megadott intervallumba esésnek mekkora a valószínűsége, például hogy kockával legfeljebb négyest dobunk.
Folytonos valószínűségi változó esetén a sűrűségfüggvény megkönnyíti annak kiszámítását, hogy mekkora annak a valószínűsége, hogy a változó egy adott intervallumba esik. További jellemző értékek a várható érték, a szórás és a magasabb rendű momentumok.
A valószínűségi változók két leggyakrabban emlegetett fajtája a diszkrét és a folytonos valószínűségi változó. Szemléletesen a diszkrét valószínűségi változó olyan, ami elkülönült értékeket tud csak felvenni, a folytonos pedig olyan, ami – legalább egy intervallumon – bármilyen értéket felvehet. Diszkrét valószínűségi változó például az, ami egy kockadobás eredményét írja le, vagy azt, hogy egy üzletbe következőnek betoppanó 8 vendég közül hány férfi. Ezzel szemben folytonosnak tekinthető az a valószínűségi változó, ami azt írja le, hogy az ugyanebbe az üzletbe betoppanó következő vevő milyen magas, vagy hogy egy fáról leszüretelt őszibarack mekkora súlyú, hisz ezek a változók – legalábbis egy intervallumon – akármilyen értéket felvehetnek. (Ez a bekezdés csak szemlélteti a folytonos valószínűségi változók fogalmát, és nem teljesen pontos. A precíz matematikai meghatározás a bekezdés alján megadott szócikkben található.) A konstans valószínűségi változó is diszkrét (elfajult eloszlású): minden esetén.
Fontos megjegyezni, hogy nem csak diszkrét és folytonos valószínűségi változók vannak, tehát ez a két osztály nem adja a valószínűségi változók osztályának partícióját. Se nem folytonos, se nem diszkrét például az a valószínűségi változó, ami a következő kísérletet írja le: feldobunk egy pénzérmét, ha az eredmény fej, akkor a valószínűségi változó értéke legyen 2 ha írás, akkor a valószínűségi változó vegyen fel egy számot véletlenszerűen a [0,1] intervallumon (egyenletes eloszlás szerint).
A folytonos és a diszkrét valószínűségi változókat azért érdemes elkülöníteni a valószínűségi változók nagy osztályából, mert ez a két osztály sok szempontból nagyon jól – és egymástól nagyon eltérően – viselkedik. A várható érték kiszámítására például a diszkrét valószínűségi változók esetében speciális és könnyen számolható képlet adódik, sűrűségfüggvénye pedig csak folytonos valószínűségi változónak lehet.
A pontos matematikai definíciókat az alábbi szócikkek tartalmazzák:
Egy valószínűségi változót több okból nevezhetnek folytonosnak.
Ha valószínűségi változó az eseménytéren, és adva van a mérhető függvény, akkor is valószínűségi változó az eseménytéren, mivel mérhető függvények kompozíciója szintén mérhető. A függvényt transzformációjának nevezik.
Ekkor eloszlásfüggvénye
Az valószínűségi mezőn értelmezett valószínűségi változó várható értéke:
Egy valószínűségi változó integrálható, ha várható értéke létezik és véges. Kvázi-integrálható, ha van várható értéke, de ennek nem kell végesnek lennie. Az integrálható változó kvázi-integrálható is.
Legyen valós, folytonos eloszlású valószínűségi változó, és . Ekkor
Esetszétválasztás szerint:
Egy valószínűségi változó standardizált, ha várható értéke 0 és szórása 1. Egy valószínűségi változó standardizáltja:
Ez az valószínűségi változót standard valószínűségi változóvá való transzformálása.
Két valószínűségi változó, független, ha bármely két intervallum, és esetén az és események függetlenek. Ekkor .
A két kockával dobást bemutató példában és függetlenek, de és nem. Például, ha akkor nem lehet 2 vagy 3.
Több valószínűségi változó, függetlensége azt jelenti, hogy az valószínűségi vektorváltozó valószínűsége megfelel a szorzatmértékének.[9]
Például a három kockával való dobás esetén értelmezhető az valószínűségi mező mint:
Ekkor a -adik kockával dobás eredménye
Szintén lehetséges konstruálni adott eloszlású független valószínűségi változók tetszőleges családjának megfelelő valószínűségi mezőt.[10]
Két vagy több valószínűségi változó azonos eloszlású, ha indukált valószínűségeloszlásaik megegyeznek. A két kockával való dobás , valószínűségi változói azonos eloszlásúak, de és nem.
Gyakran vizsgálják valószínűségi változók sorozatát, amelyek függetlenek és azonos eloszlásúak; ezeket független azonos eloszlású valószínűségi változóknak nevezik.
Három kockával való dobáskor , és független azonos eloszlású valószínűségi változók. Az első két kockával dobás összege és a második és harmadik kockával dobás összege azonos eloszlású, de nem független. Ezzel szemben és független, de nem azonos eloszlású.
Valószínűségi változók felcserélhető családjai azok a családok, ahol az eloszlások változatlanok maradnak, ha a családban véges sok valószínűségi változót felcserélnek. Ez megköveteli az azonos eloszlást, de a függetlenséget nem.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.