Remove ads
From Wikipedia, the free encyclopedia
Az osztályfelbontás vagy osztályozás (idegen szóval partíció) halmazelméleti fogalom, mely a matematika minden területén előfordul, és rendkívül hasznos.
Legyen adott egy halmaz (a továbbiakban univerzum(halmaz)). Ennek részhalmazainak halmazát -val jelöljük, és az halmaz hatványhalmazának nevezzük. A halmaz egy részhalmazát – tehát néhány részhalmazának halmazát – az feletti halmazcsaládnak nevezzük.
Mármost az egy osztályfelbontása vagy partíciója egy olyan feletti halmazcsalád, azaz részhalmazainak egy halmaza, melynek elemei mint (rész)halmazok egyrészt
Egy kicsit bonyolultabb, de sokkal hasznosabb definíció a halmazcsalád helyett a halmazrendszer fogalmára épít.
Legyen adott két halmaz. Előbbi halmaz részhalmazai halmazát, azaz hatványhalmazát továbbra is -val jelöljük. Valamely függvényt nevezünk lényegében az halmaz indexhalmaz feletti (vagy feletti) halmazrendszernek. Erre az jelölést alkalmazzuk.
Egy ilyen halmazrendszert osztályfelbontásának vagy partíciójának nevezünk, ha (ugyanazok a tulajdonságok, mint fent) teljesülnek, azaz a rendszer tagjai:
Szemléletesen egy partíciót egyszerűen úgy képzelhetjük el, hogy az univerzumhalmazt „szétszedjük” kisebb, elkülönült halmazokra. E fogalom nagyon fontos: például a maradékosztályok adott modulus szerint az egész számok halmazát particionálják (minden egész szám egy és csak egyféle maradékot ad adott egész modulussal osztva). Az elemi matematikában három fontos példa is van osztályfelbontásra:
Mindhárom partíció speciális tulajdonsága, hogy az (ekvivalencia)osztályok mindkét esetben mind azonos számosságúak (ez nem követelmény egyébként tetszőleges partícióra).
A partíciófogalom fontosságát az is mutatja, hogy – amint az már az elemi matematikai példákból is sejthető – szoros kapcsolatban van az ekvivalenciareláció – az egyszerre reflexív, tranzitív és szimmetrikus relációk – fogalmával.
Minden partíció meghatároz egy ekvivalenciarelációt, és viszont (a partíciót és a relációt egymás asszociáltjainak mondjuk, más elnevezésben a relációt a partíció magjának, míg a partíciót a reláció faktorának). Két elem akkor álljon relációban, ha a partíció azonos osztályába esnek, fordítva pedig az adott elemmel relációban lévő elemek halmaza, mint a reláció alaphalmazának egy részhalmaza, valójában felfogható, mint az alaphalmaz partíciójának egy tagja, osztálya.
Formálisan:
Az ekvivalenciarelációk pedig rendkívül fontosak a matematikában (például a halmazok számosság szerinti ekvivalenciája, az euklideszi és projektív geometriában a párhuzamosság, algebrai vagy egyéb struktúrák izomorfiája, a moduláris számelmélet kongruenciarelációi, a csoportelmélet mellékosztályok szerinti partíciói, azonos nyelvet elfogadó véges automaták stb. mind-mind egy egy matematikai elmélet alapját jelentik).
Egy halmaz összes partíciója hálót alkot, azaz rendezhető (a rendezési reláció a „finomítás”: egy partíció „finomabb”, mint egy másik, ha előbbi minden tagja része az utóbbi valamely tagjának). Ez a tény például a legegyszerűbb integrálfogalmak felépítésében (Riemann-integrál, Darboux-integrál) kap fontos szerepet, természetesen a halmazelméleten kívül.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.