Remove ads
From Wikipedia, the free encyclopedia
A Pareto-eloszlás folytonos, félig végtelen intervallumú eloszlás [0,∞), mely számos szociális, tudományos, geofizikai és biztosítási területen alkalmazható, illetve jellemző az ezeken a területeken tapasztalt jelenségekre. A közgazdaságtan területén kívül időnként Bradford-eloszlásnak nevezik. A Pareto-eloszlás Vilfredo Pareto (1848 – 1923) olasz mérnök, szociológus, közgazdász és filozófusról kapta a nevét.
Pareto eredetileg ezt az eloszlást egy társadalmi jelenségre alkalmazta.
Pareto azt állította, hogy a megtermelt javak közel 80%-a a társadalom 20%-ához kerül a társadalomra jellemző vagyonelosztás során.[1][2]
Az elméletét a keresetek eloszlására is alkalmazta.
Ezt az elképzelést egyszerűbben az úgynevezett Pareto-elv fejezi ki, vagy más néven a “80-20-as szabály”,mely azt mondja, hogy a lakosság 20%-a befolyásolja a népesség 80%-nak a vagyonát. Megjegyzendő, hogy a 80-20-as szabály csak bizonyos α értékek mellett érvényes. A korabeli angol adatok szerint a lakosság 30%-a rendelkezik a bevételek 70%-val. A valószínűség sűrűségfüggvényen látható, hogy a lakosság tört része, mely személyre vetítve birtokolja a vagyon kis részét, illetve ennek nagy a valószínűsége, majd egyenletesen csökken, ahogy a vagyon nő. (meg kell jegyezni, hogy a Pareto-eloszlás nem nyújt teljesen reális képet az alsó végen).
Az eloszlás nem korlátozódik csak a lakosság vagyoni eloszlására, a következő esetekben is közelítően alkalmazható a Pareto-eloszlás:
Ha X a Pareto-eloszlás (I. Tip) valószínűségi változója,[5] akkor annak valószínűsége, hogy X nagyobb, mint x, azaz a túlélési függvény (farok függvénynek is hívják):
ahol xm a minimálisan lehetséges (pozitív) értéke X-nek, és α egy pozitív paraméter. Az I. típusú Pareto-eloszlást a xm skálaparaméter, és a α paraméter jellemzi, mely farok indexként is ismert. Abban az esetben, amikor a Pareto-eloszlást a gazdagság eloszlására használják, akkor az α paramétert Pareto-indexnek hívják.
A Pareto-eloszlás kumulatív eloszlás függvénye α és xm paraméterekkel:
Ha lineáris koordináta-rendszerben ábrázoljuk, akkor az eloszlás az ismerős J alakú görbét mutatja, mely aszimptotikusan közelít mindkét végén. Log-log koordináta-rendszerben ábrázolva egyenes vonal adódik.
A Pareto-eloszlást követő valószínűségi változó várható értéke:
A szórásnégyzet:
(Ha , a szórásnégyzet nem létezik). A momentum:
A momentum generáló függvény csak nem pozitív értékekre definiálható (t≤0 ):
A karakterisztikus függvény:
A geometrikus várható érték (G):[6]
A harmonikus várható érték (H):[6]
A Pareto-eloszlás a következő módon kapcsolódik az exponenciális eloszláshoz: Ha X is Pareto-eloszlású minimum xm és index α, paraméterekkel, akkor:
akkor exponenciális eloszlású α intenzitással.
Hasonlóan, ha Y exponenciális eloszlású α intenzitással, akkor
Pareto-eloszlású, minimum xm és index α paraméterekkel.
A Pareto-eloszlás és a log-normális eloszlás egymásnak alternatív eloszlásai a hasonló tipusú mennyiségek esetén. A kettő közötti kapcsolatra jellemző, hogy mindkét esetben a változók eloszlása exponenciális, más paraméterek mellett.
Míg a Pareto-eloszlás folytonos eloszlás, a Zipf-eloszlást szokták Zéta-eloszlásnak is hívni, és a Pareto-eloszlás diszkrét változatának.
A szimmetrikus Pareto-eloszlást a sűrűség függvénnyel definiálhatjuk: [7]
A Pareto-eloszlással hasonló formája van esetben, és az y tengelyre tükörszimmetrikus.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.