cconxunto de mecanismos que no interior dun organismo teñen a finalidade de protexelo das doenzas From Wikipedia, the free encyclopedia
O sistema inmunitario é o conxunto de mecanismos que no interior dun organismo teñen a finalidade de protexelo das doenzas, identificando e eliminando os axentes patóxenos. Debe detectar unha gran variedade de axentes, desde virus ata vermes parasitos, e precisa distinguilos das súas propias células e tecidos para ser eficaz, ademais os patóxenos adáptanse e evolucionan para infectaren con éxito o organismo hóspede.
Para sobrevivir, diversos organismos desenvolveron mecanismos para recoñecer e neutralizar patóxenos. Mesmo os organismos unicelulares simples, como poden ser as bacterias, posúen un sistema de enzimas para protexerse das infeccións virais. Outros mecanismos inmunitarios básicos desenvolvéronse nas antigas células eucariotas permanecendo nos seus modernos descendentes, como plantas, peixes, réptiles e insectos. Entre eses mecanismos están os péptidos coñecidos como defensinas, a fagocitose e o sistema do complemento. Mecanismos máis sofisticados desenvolvéronse máis recentemente coa evolución dos vertebrados[1]. Os sistemas inmunitarios dos vertebrados consisten en varios tipos de proteínas, células, órganos e tecidos que interactúan nunha rede elaborada e dinámica. Como parte desta resposta máis complexa, os sistema dos vertebrados adáptanse para recoñeceren os patóxenos concretos con maior eficacia. O proceso de adaptación crea memorias inmunolóxicas e permite unha mellor protección en futuros encontros con eses patóxenos. Este proceso de adquirir inmunidade é a base da vacinación.
O sistema inmunitario protexe os organismos de infeccións con frontes de defensa sucesivas, cun nivel de espeficidade que se vai incrementanto desde as máis simples, barreiras físicas que impiden aos axentes patóxenos como bacterias e virus entrar no organismo. De se conseguir romper esa barreira, o sistema inmunitario innato dá unha resposta inmediata, pero que non dunha forma específica. Estes sistemas inmunitarios innatos atópanse en todas as plantas e animais [2]. Así e todo, se o axente patóxeno evade a resposta innata, os vertebrados posúen unha terceira barreira de protección, o sistema inmunitario adaptativo, que se activa como unha resposta innata durante a infección para recoñecer o patóxeno, esta resposta mantense mesmo despois que o patóxeno fora eliminado, na forma dunha memoria inmunolóxica, o cal permite ao sistema inmunitario adaptativo atacar máis rápido e mellor cada volta que se encontra con ese patóxeno.[3][4]
Sistema inmunitario innato | Sistema inmunitario adaptativo |
---|---|
A resposta non é específica | A resposta é específica contra patóxenos e antíxenos |
A exposición leva á resposta máxima inmediatamente | Tempo de espera entre a exposición e a resposta máxima |
Inmunidade celular e humoral | Inmunidade celular e humoral |
Sen memoria inmunolóxica | A exposición leva á memoria inmunolóxica |
Atópase en case todas as formas de vida | Atópase só nos vertebrados mandibulados |
Tanto a inmunidade innata como a adaptativa dependen da habilidade do sistema inmunitario para distinguir entre as moléculas propias das que non o son. En inmunoloxía, as moléculas propias son aqueles compoñentes dun organismo que o sistema inmunitario distingue das substancias estrañas [5]. Pola contra, as moléculas non propias son aquelas recoñecidas como estrañas. Unha das clases de moléculas non propias son os chamados antíxenos que se definen como substancias que se ligan a receptores inmunitarios específicos e desencadenan unha resposta inmune.[6].
Diferentes barreiras protexen os organismos das infeccións, entre elas hai barreiras mecánicas, químicas e biolóxicas. A cutícula dunha folla, o exoesqueleto dun insecto, a casca dun ovo ou a pel son exemplos de barreiras mecánicas que constitúen a primeira liña de defensa contra a infección. Non obstante, os organismos non poden pechar as cancelas totalmente ao su medio externo e existen outros sistemas que protexen as aberturas do corpo tales como os pulmóns, intestinos e o sistema xenitourinario. Nos pulmóns, a tose e os esbirros expulsan mecanicamente os patóxenos e outros elementos irritantes para o aparato respiratorio. O fluxo de lágrimas e urina expele mecanicamente os patóxenos, mentres a secreción de mucosidade polo aparato respiratorio e dixestivo serve para atrapar microorganismos [7]
As barreiras químicas tamén protexen contra a infección. A pel e o sistema respiratorio secretan péptidos antimicrobianos como as β-defensinas.[8]. Enzimas como o lisozima e a fosfolipase A2 na saliva, as lágrimas e o leite materno son tamén antibacterianos.[9][10] As secrecións vaxinais serven como unha barreira química na menarquía, cando se converten en lixeiramente ácidas, mentres o seme contén defensinas e cinc que matan os patóxenos.[11][12] No estómago, o ácido gástrico e as peptidases serven como poderosas defensas químicas contra os patóxenos inxeridos.
Dentro dos tractos xenitourinario e gastrointestinal, a flora comensal serve como barreira biolóxica competindo coas bacterias polo alimento e o espazo, nalgúns casos tamén cambiando as condicións do seu contorno, como o pH ou o contido de ferro dispoñible.[13]. Isto reduce a probabilidade de que os axentes patóxenos acaden o número suficiente para causar doenzas. Non obstante, debido a que a maioría de antibióticos non diferencian entre bacterias patóxenas e a flora habitual, os antibióticos orais poden deixar unha sobreabundancia de fungos, que non se ven afectados pola maioría dos antibióticos, e orixinar as condicións para que se dean procesos como a candidiase vaxinal.[14] Hai evidencia que a reintrodución da flora probiótica, como o lactobacillus normalmente atopado no iogur axuda a restaurar un equilibrio saudable de poboacións microbianas nas infeccións intestinais nos nenos, ademais de datos preliminares alentadores en casos de gastroenterite bacteriana, enfermidades inflamatorias intestinais, infeccións urinarias e infeccións poscirúrxicas.[15][16][17]
Os microorganismos que conseguen entrar con éxito nun organismo atópanse coas células e os mecanismos do sistema inmunitario innato. A resposta innata actívase normalmente cando os receptores de recoñecemento de patróns identifica as bacterias, ao recoñecer compoñentes que se conservan entre os principais grupos de microorganismos.[18]. As defensas so sistema inmune innato non son específicas, o que significa que eses sistemas responden aos patóxenos dun xeito xenérico. Estes sistema non confire inmunidade a longo prazo contra o patóxeno. O sitema inmune innato é o sistema dominante de protección na maioría dos organismos.
A inflamación é unha das primeiras respostas do sistema inmunitario á infección.[19] Os síntomas da inflamación son o arroxamento e o inchazo, causados polo aumento do fluxo do sangue no tecido. A inflamación prodúcena os eicosanoides e citocinas, liberados por células feridas ou infectadas. Os eicosanoides inclúen prostaglandinas que producen febre e a dilatación dos vasos sanguíneos asociados coa inflamación, e leucotrienos que atraen certos leucocitos.[20][21] As citocinas inclúen interleucinas que son responsables da comunicación entre os leucocitos; quimiocinas que potencian a quimiotaxe; e interferóns que teñen efectos antivirais, tales como a supresión da síntese proteica na célula hóspede.[22] Tamén se poden liberar factores de crecemento e citolóxicos. Estas citocinas e outros axentes químicos atraen células inmunitarias ao lugar da infección e promoven a curación de calquera tecido danado mediante a eliminación dos patóxenos.[23]
O sistema do complemento é unha fervenza bioquímica que ataca a superficie das células estrañas. Contén por riba das vinte proteínas diferentes e a súa denominación procede da súa capacidade para complementar a destrución dos patóxenos realizado polos anticorpos. O sistema de complemento é o maior compoñente humoral da resposta inmunitaria innata.[24][25] Moitas son as especies que teñen sistemas de complemento, non só os mamíferos, tamén plantas, peixes e algúns invertebrados.[26]
Nos humanos, esta resposta de complemento actívase pola ligazón dos anticorpos que se unen aos microorganismos ou pola unión de proteínas de complemento a carbohidratos na superficie dos microorganismos. Este sinal de recoñecemento produce unha rápida resposta destrutiva.[27]
Os leucocitos actúan como un organismos unicelulares independentes e son o segundo brazo do sistema inmunitario innato. Os leucocitos innatos inclúen os fagocitos (macrófagos, neutrófilos, e células dendríticas), mastocitos, eosinófilos, basófilos e células exterminadoras naturais. Estas células identifican e eliminan patóxenos, atacando os máis grandes ou ben engulíndoos para matalos.
A fagocitose é unha elemento importante da inmunidade celular innata, realizada polas células chamadas fagocitos, que engolen, ou comen, patóxenos e partículas. Os fagocitos xeralmente patrullan o corpo na procura de patóxenos, pero poden ser chamadas a localizacións específicas polas citocinas. Unha vez que un patóxeno queda envolvido polo fagocito, queda atrapado nunha vesícula intracelular chamada fagosoma, que deseguido se fusiona con outra vesícula chamada lisosoma para formaren un fagolisosoma. A actividade das enzimas dixestivas ou un chorro respiratorio que libera radicais libres destrúen os patóxenos[28][29]
Os neutrófilos e macrófagos son fagocitos que percorren o corpo na procura de patóxenos invasores.[30] Os neutrófilos atópanse normalmente no sistema circulatorio e constitúen o tipo de fagocito máis abundante, polo xeral representa entre o 50% e o 60% do total dos leucocitos en circulación no corpo.[31] Durante a fase aguda de inflamación, particularmente nas infeccións bacterianas, os neutrófilos migran cara ao lugar da inflamación nun proceso coñecido como quimiotaxe, e normalmente son as primeiras células en chegaren á escena da infección. Os macrófagos son células versátiles que residen dentro dos tecidos e producen unha ampla gama de substancias químicas, incluíndo enzimas, proteínas de complemento, e factores reguladores como interleucina 1.[32] Os macrófagos actúan tamén como preeiros, librando ao organismo de células mortas e outros refugallos, e células presentadoras de antíxenos para activaren o sistema inmunitario adaptativo.
As células dendríticas son fagocitos en tecidos que están en contacto co ambiente exterior. Localízanse, xa que logo, na pel, nariz, pulmóns, estómago e intestinos.[33] Débenlle o seu nome polo seu parecido coas dendritas neuronais, xa que ámbolos dous teñen proxeccións en forma de espiña, aínda que as células dendríticas non están relacionadas de xeito ningún co sistema nervioso. As células dendríticas serven como ligazón entre os sistemas inmunitarios innato e adaptativo por presentaren antíxenos ás células T, un dos tipos de célula clave do sistema inmunitario adaptativo.
Os mastocitos residen nos tecidos conxuntivos e nas mucosas, e regulan a resposta inflamatoria.[34] Frecuentemente están relacionados coa alerxia e a anafilaxe. Tanto os basófilos como os eosinófilos aparecen relacionados cos neutrófilos. Secretan mediadores químicos que están comprometidos na defensa contra os parasitos e xogan o seu papel nas reaccións alérxicas, como é o caso da asma.[35] As células exterminadoras naturais son leucocitos que atacan e estruen células tumorosas ou aquelas infectadas por virus.[36]
O sistema inmunitario adaptativo desenvolveuse nos vertebrados primitivos e permite unha mellor resposta inmunitaria e tamén a existencia dunha memoria inmunolóxica, lembrando cada patóxeneo pola sinatura do seu antíxeno.[37] A resposta inmunitaria adaptativa é caracterísitca para cada antíxeno e require o recoñecemento dos antíxenos foráneos durante o proceso coñecido como presentación de antíxenos. A especificidade do antíxeno permite producir respostas que se adaptan a patóxenos específicos ou a células infectadas por patóxenos. A habilidade para establecer esas respostas permanece no organismo por "células de memoria". De un patóxeno infectar un organismo máis dunha vez, esas células específicas de memoria elimínano rapidamente.
As células do sistema inmunitario adaptativo son un tipo especial de leucocitos, chamados linfocitos. As células B e as células T son os principais tipos de linfocitos e derívanse das células nai hematopoéticas da medula ósea. As células B participan na resposta humoral inmunitaria, mentres as células T participan na resposta inmunitaria celular.
Tanto as células B como as células T conteñen moléculas receptoras que recoñecen albos específicos. As células T recoñecen un obxectivo externo, como un patóxeno, só despois que os antíxenos (pequenos anacos do patóxeno) foran procesados e presentados en combinación cun receptor propio, unha molécula do chamado complexo maior de histocompatibilidade (CMH). Hai dous subtipos principais de células T: a célula T asasina e a célula T auxiliar. As células asasinas só recoñecen os antíxenos ligados a moléculas do CMH de clase I, mentres as células T auxiliares só recoñecen os antíxenos ligados a moléculas do MHC de clase II. Eses dous mecanismos de presentación de antíxenos reflicten as diferentes tarefas dos dous tipos de células T. Un terceiro suptipo, máis escaso, son as células γδ T que recoñecen antíxenos intactos que non se ligan a receptores MHC.[38]
En contraste, o receptor específico das células B (BCR) é unha molécula de anticorpo na superficie da célula B, e recoñece os patóxenos completos sen necesidade de procesar antíxenos. Cada liñaxe de células B expresa na súa superficie un anticorpo diferente, así o conxunto completo de receptores de antíxenos das células B representan todos os anticorpos que o organismo pode elaborar.
As células T asasinas son un subgrupo de células T que destrúen células infectadas por virus (e outros patóxenos), as danadas ou as que non funcionan correctamente[39]. Ao igual que sucede coas células B, cada tipo de célula T recoñece un antíxeno diferente. As células T actívanse cando o seu receptor de células T (TCR) se liga ao seu antíxeno específico, acoplado ao receptor MHC de clase I doutra célula. Axuda ao recoñecemento deste acoplamento MHC:antíxeno a existencia dun correceptor, denominado CD8. A célula T viaxa logo a través do corpo na procura de células onde os receptores MHC I leven este antíxeno. Cando unha célula T activada contacta con tales células, desprende citotoxinas, como a perforina, que forma poros na membrana plasmática, permitindo entrar aos ións, auga e toxinas. A entrada doutra toxina chamada granulisina induce á célula atacada a someterse á apoptose.[40] A morte de células T hospede é especialmente importante para previr a replicación dos virus. A activación das células T está estreitamente controlada e xeralmente require do complexo CMH/antíxeno un sinal moi forte que a active, ou sinais de activación adicionais que veñan das células T auxiliares.
As células T auxiliares regulan tanto as respostas inmunitarias innatas como as adaptativas e axuda a determinar os tipos de respostas do organismo fronte a cada patóxeno concreto.[41][42] Esas células non teñen actividade citotóxica e non matan células infectadas nin limpan patóxenos directamente pero dirixen a resposta inmune controlando outras células para realizaren esas accións.
As células T auxiliares expresan receptores de células T que reocoñecen antíxenos ligados a moléculas MHC de clase II. O correceptor CD4 das células auxiliares tamén recoñecen o complexo MHC:antíxeno e mobiliza moléculas dentro da célula T (como Lck) que son responsables da activación das células T. As células T auxililares teñen unha asociación máis feble co complexo MHC:antíxeno que o observado para as células T asasinas, isto significa que precisa que se liguen moitos receptores (200 ou 300) na célula T auxiliar para activar a célula auxiliar, mentres que as células asasinas pódense activar pola unión dunha soa molécula CMH:antíxeno. A activación da célula T auxiliar tamén require unha duración máis longa da unión coa célula presentadora de antíxeno.[43] A activación das células T auxiliares causa a emisión de citoquinas que inflúen na actividade de moitos tipos de células. O sinais da citoquina producidas polas células T auxiliares reforzan a función microbicida dos macrofagos e a actividade das células T asasinas. Hai que engadir que a activación das células T auxiliares provoca unha sobreregulación de moléculas portadas na superficie das células T, como a CD154, que proporciona sinais extras de estimulación requiridas para activar linfocitos B que producen anticorpos.[44]
As células T γδ caracterízanse por posuíren un receptor de células T (RCT) alternativo na súa superficie chamado γδ (gamma-delta) ao contrario que as células T CD4+ e CD8+ (que teñen o αβ) compartindo a característica coas células T auxiliares, células T citotóxicas e células asasinas naturais. As causas que producen respostas por parte das células T γδ non se coñecen totalmente. Como outras subpoboacións de células T non convencionais que portan RCT invariables, tales como o receptor CD1d restrinxido ou a células T asasinas naturais, as células T γδ atópanse no límite entre a inmunidade adaptativa e a innata.[45] Por unha banda, as células T γδ son un compoñente do inmunidade adaptativa xa que son reorganizar os xenes dos seus RCT para produciren diversidade de receptores e poden tamén desenvolver unha memoría fenotípica. Por outra banda, as súas varias subpoboacións son tamén parte do sistema inmune innato, xa que varias das súas subpoboacións posúen receptores RCT ou NK restrinxidos que se poden usar como receptores de recoñecemento de patróns. Así por exemplo, gran número de células T Vγ9/Vδ2 humanas responden en horas a moléculas comúns producidas por microbios, e as células T Vδ1+ nos epitelios responden a células epiteliais estresadas.[46]
O linfocito B identifica os patóxenos cando os anticorpos da súa superficie se ligan a antíxenos foráneos específicos.[47] Este complexo antíxeno/anticorpo pasa ao interior do linfocito B, procesando os peptidos por medio da proteólise. O linfocito B entón amosa eses peptidos anti xénicos na súa superficie unidos a moléculas CMH de clase II. Esta combinación de CMH e antíxeno atrae a un linfocito T auxiliar, liberando linfoquinas.[48] Ao se activar o linfocito B comeza a súa división, a súa descendencia (plasmocitos) secretan millóns de copias do anticorpo que recoñecen este antíxeno. Eses anticorpos circulan no sangue plasmático e na linfa, ligándose aos patóxenos que portan eses antíxenos e marcándoos para a súa destrución por medio da activación do complemento ou ao ser absorbidos e destruídos polos fagocitos. Os anticorpos poden tamén neutralizar os perigos directamente, ligándose a toxinas bacterianas ou interferindo cos receptores que eses virus e bacterias usan para infectar as células.[49]
Non obstante as moléculas do sistema inmunitario adaptativo (anticorpos e receptores de células T) existiren só en vertebrados mandibulados, descubriuse unha molécula diferente derivada dos linfocitos nos primitivos vertebrados mandibulados, tales como a lamprea e os mixínidos. Estes animais posúen unha gran cantidade de moléculas chamadas receptores linfocíticos variables que, como os receptores de antíxenos dos vertebrados mandibulados, prodúcense de só un pequeno número (un ou dous) de xenes. Pénsase que esas moléculas se ligan aos antíxenos patóxenos dun xeito semellante a como fan os anticorpos e co mesmo grao de especificidade.[50]
Cando se activan células B e as células T comezan a se replicar, algún dos seus descendentes converteranse en células de memoria de vida longa. Ao longo da vida dun animal, esas células de memoria recordarán cada patóxeno específico que atoparan podendo así establecer unha resposta efectiva de detectar de novo o patóxeno. Considérase adaptativa porque acontece ao longo da vida dun individuo como unha adaptación da infección con ese patóxeno que prepara o sistema inmunitario para futuros retos. A memoria inmunolóxica pode ser ben memoria pasiva e de curta duración ou ben activa e de longa duración.
Os nenos recentemente nacidos nunca estiveron expostos previamente a microbios e son particularmente vulnerables ás infeccións. A nai proporcionalles varios niveis de protección pasiva. Durante o embarazo, un tipo particular de anticorpo, a IgG transmítese da nai ao neno directamente a través da placenta, así as crías humanas teñen altos niveis de anticorpos mesmo no nacemento, co mesmo rango de especificidade contra o antíxenos que o da súa nai.[51] O leite materno tamén contén anticorpos que se transfiren ao intestino do bebé protexéndoo contra as infeccións bacterianas ata que o recentemente nado poida sintetizar os seus propios anticorpos.[52] Esta é inmunidade pasiva porque o feto realmente non produce células de memoria ou anticorpos, tan só os colle da nai. Esta inmunidade pasiva é normalmente de curta duración, desde uns poucos días ata varios meses. En medicina, a inmunidade pasiva protectora pódese tamén transferir artificialmente dun individuo a outro mediante soro rico en anticorpos.[53]
A memoria activa a longo prazo acquírese logo da infección ao se activar as células B e T. A inmunidade activa pódese xerar tamén artificialmente, mediante a vacinación. O principio no que se basea a vacinación (tamén denominado inmunización) é a introdución dun antíxeno dun patóxeno para estimular o sistema inmunitario e desenvolver unha inmunidade específica contra ese patóxeno en particular sen causar a enfermidade asociada co organismo. Estra indución deliberada dunha resposta inmune é exitosa porque explota a especificidade natural do sistema inmunitaria, e tamén a súa inducibilidade. Por ser as enfermidades infecciosas unha das principais causas de morte da poboación humana, a vacinación representa a máis efectiva manipulación do sistema inmunitario desenvolvida ata agora.[54]
A maioría das vacinas virais baséanse en virus vivos atenuados, mentres a maioría das vacinas bacterinas baséanse en compoñentes acelulares de microorganismos, incluíndo compoñentes inocuos de toxinas. Xa que a maioría dos antíxenos derivados de vacinas acelulares non inducen unha resposta adaptativa forte, a moitas das vacinas bacterinas engádenselle coadxuvantes adicionais que activan as células presentadoras de antíxeno do sistema inmunitario innato para maximizar a inmunoxenicidade.[55]
O sistema inmunitario é unha estrutura abondo efectiva que incorpora especificidade, inducibilidade e adaptación. Non obstante, ás veces falla, estes fallos clasifícanse en tres categorías principais: inmunodeficiencia, autoinmunidade e hipersensibilidade.
As inmunodeficiencias acontecen cando un ou máis dos compoñentes do sistema inmunitario permanecen inactivos. A capacidade do sisterma inmunitario para responder aos patóxenos é menor tanto nos individuos máis novos como nos máis vellos, as repostas inmunitarias comezan a declinar arredor dos 50 anos debido á inmunosenescencia.[56][57] Nos países desenvolvidos, a obesidade, alcoholismo, e as drogas son causas comúns dunha mala resposta inmunolóxica. Así e todo, a malnutrición é a causa máis común de inmunodeficiencia nos países subdesenvolvidos. As dietas con insuficiente cantidade de proteínas asócianse coa inmunidade celular danada, coa actividade de complemento, a función fagocita, a IgA, concentracións de anticorpos e a produción de citocinas. A deficencia de nutrientes simples como é o caso do ferro, cobre, cinc, selenio, vitaminas (A, C, E e B6) e ácido fólico (vitamina B9) tamén reduce a resposta inmunolóxica. Ademais, a perda do timo a idades temperás por mutación xenética ou por intervención cirúrxica provoca inmunodeficiencia severa e unha alta probabillidade de infección.[58]
As inmunodeficiencias pódense tamén herdar ou adquirir. A doenza granulomatosa crónica, a cal provoca que os fagocitos teñan unha capacidade reducida para destruíren patóxenos, é un exemplo dunha inmunodeficiencia herdada ou conxénita. A SIDA e algúns tipos de cancro causan tamén inmunodeficiencia acquirida.[59][60]
As respostas inmunitarias hiperactivas comprenden o outro cabo da disfunción inmunitaria, especialmente as desordes autoinmunes. Aquí, o sistema inmunitario falla e non distingue correctamente o propio do alleo, e ataca parte do seu organismo. En circunstancias normais, a maioría das células T e os anticorpos reaccionan con péptidos propios.[61] Unha das funcións das células especializadas (localizadas no timo e na medula ósea) é producir a maduración de linfocitos novos con antíxenos propios e eliminar aquelas células que recoñecen autoantíxenos, previndo a autoinmunidade.
A hipersensibilidade é unha resposta inmunitaria que dana os propios tecidos do corpo. Divídense en catro clases (Tipo I - IV) segundo os mecanismos envolvidos e a duración da reacción hipersensible. O tipo I de hipersensibilidade é unha reacción inmediata ou anafiláctica, con frecuencia asociada con alerxia, os síntomas poden variar desde un lene malestar ata a morte, neste tipo I intervén a IgE liberada por mastocitos e basófilos.[62] O tipo II de hipersensibilidade ocorre cando os anticorpos se ligan a antíxenos situados nas propias células do doente, marcándoos para a súa destrución, isto denomínase tamén hipersensibilidade dependente de anticorpos (ou citotóxica), e prodúcese por mediación dos anticorpos IgG e IgM. Os inmunocomplexos (agregación de antíxenos, proteínas de complemento e anticorpos IgG e IgM) depositados en varios tecidos desencadenan a hipersensibilidade do tipo III. A hipersensibilidade do tipo IV normalmente tardfa entre dous e tres días en se desenvolver, estas reaccións do tipo IV aparecen inseridas en moitas doenzas autoinmunes e infecciosas, pero poden tamén participar en dermatite de contacto. Esas reaccións están mediadas por células T, monocitos e macrófagos.
É posible que un sistema inmunitario adaptativo e de múltiples compoñentes aparecese cos primeiros vertebrados, xa que os invertebrados non xeran linfocitos nin resposta humoral ningunha baseada nos anticorpos. Moitas especies, non obstante, utilizan mecanismos que semellan ser precursores deses aspectos da inmunidade dos vertebrados. Os sistemas inmunitarios aparecen mesmo nas formas de vida máis simples, como a bacteria que usa un único mecanismo de defensa, denominado sistema de restrición-modificación para se protexer de patóxenos víricos, chamados bacteriófagos.[63] Os procariotas tamén posúen inmunidade adquirida, cun sistema que usa secuencias CRISPR para reter fragmentos dos xenomas dos fagos cos que tiveran contacto no pasado, o cal permite bloquear a replicación do virus cunha forma de interferencia de ARN.[64][65]
Os receptores de recoñecemento de patróns son proteínas que usan case todos os organismos para identificar moléculas asociadas con patóxenos. Os péptidos antimicrobianos coñecidos como defensinas son un compoñente, que se conservou ao longo da evolución da resposta inmune innata, presente en todos os animais e plantas, e representan a principal forma de inmunidade sistémica dos invertebrados. O sistema do complemento e as células fagócitas úsanas tamén moitas formas de vida invertebrada. As ribonucleases e a ruta de interferencia de ARN consérvanse en todos os eucariotas, e pénsase que xoga un papel na resposta inmunitaria aos virus.[66]
Ao contrario que os animais, as plantas carecen de células fagócitas, e a resposta inmunitaria da maioría das plantas abrangue sinais químicos sistémicos que se envían ao longo da planta.[67] Cando unha parte dunha planta se infecta, a planta produce unha resposta hipersensible, mediante a que as células do lugar da infección sofren unha rápida apoptose para previr a extensión da enfermidade a outras partes da planta. A resistencia sistémica adquirida é un tipo de resposta defensiva usada polas plantas que converte a totalidade da planta en resistente a un axente infeccioso concreto. Os mecanismo de silenciamento do ARN son particularmente impotrantes nesta resposta sistémica xa que poden bloquear a replicación de virus.[68]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.