Loading AI tools
デジタル写真を撮影するカメラ ウィキペディアから
デジタルカメラ (英: digital still camera、DSC) は、デジタル写真を撮影するカメラである。
一般に「デジタルカメラ」といえば静止画を撮影する「デジタルスチルカメラ」を指し、動画を撮影録画する「デジタルカムコーダ」[注 1] は含めない。現在では静止画撮影が可能なデジタルカムコーダや、動画撮影が可能なデジタルスチルカメラが一般的になっており、双方の性能の向上もあってその境界線が徐々になくなりつつあるが、デジタルカメラはその中でも静止画の撮影に重点を置いたモデルを指す。
QV-10が広告となっていた時期の記事によると、初期のデジタルカメラの平均的な解像度は320×240ドット[1]。 略称の「デジカメ」は日本国内では三洋電機および他業種各社の登録商標であったが、三洋電機が登録した商標に関しては更新がされなかったため、2019年に権利が消滅した[2]。
静止画をデジタルで記録する「デジタルカメラ」の前に、アナログ記録を行う「電子スチルビデオカメラ」という製品群が存在した。これは、アナログFM記録する電子カメラで、ソニーが1981年(昭和56年)に試作し後に製品化した「マビカ」を代表とする。初の販売製品としてはキヤノンのRC-701(1986年(昭和61年)発売)があり、この時に2インチのビデオフロッピーディスクを記録媒体として記録する共通規格SV規格が正式に決められた。
これに追随して、カシオはVS-101(1987年(昭和62年)6月)を発売したものの、10万円台の高価格(ちょうど同じ頃普及が進んだ8ミリビデオカメラと同額程度)のため人気が出ず、大量の不良在庫を出した。このSV規格方式を中心に、1990年代初頭に至るまでいくつかのメーカーから電子スチルカメラが発売されるも、カムコーダの人気の前に、全く普及しなかった。
なおこれらのカメラは、当時はメーカーごとに様々な名で呼ばれており、「電子スチルビデオカメラ」は、デジタルカメラ登場以降に、それと区別するために付けられた名称である。
1960年代、NASAジェット推進研究所のユージーン・F・ラリーは、モザイク感光体を使ってデジタル画像を撮影する方法を考えていた[3]。また、1972年にテキサス・インスツルメンツ社の社員ウィリス・アドコックがフィルムレスカメラの特許(米国特許4,057,830)を取得した[4] が、いずれも技術がまだコンセプトに追いついていなかった。
1975年、初の製品化されたオールデジタルカメラとしてCromemco Cyclopsが登場した。これは、『ポピュラーエレクトロニクス』1975年2月号に設計が掲載されたものを商品化したものである。画像素子として32×32画素のMOSイメージセンサを使用しており、これはMOS DRAMメモリチップを改造したものである[5]。
イーストマン・コダック社の技術者であるスティーブン・サッソンは、1975年にCCDイメージセンサを使用した自己完結型電子カメラを発明し、製造した[6][7][8]。画像サイズは100×100の10,000ピクセルで、撮影した映像をテレビに映すこともできた[9]。同じ頃、富士フイルムは1970年代にCCD技術の開発に着手した[10]。
画像をデジタル方式で記録する初めての一般向けカメラは1988年(昭和63年)に富士写真フイルムから発表された「FUJIX DS-1P」であり、当時のノートパソコンでも使われたSRAM-ICカードに画像を記録した。しかしこれは発売されることはなく、実際に店頭に現れた世界初のデジタルカメラはDycam社が1990年(平成2年)に発売した「Dycam Model 1」である。電源がなくても記録保持ができるフラッシュメモリを初採用したのは1993年(平成5年)富士写真フイルムから発売された「FUJIX DS-200F」である。
1994年(平成6年)発表・1995年(平成7年)3月発売のカシオ計算機のデジタルカメラ「QV-10」は、デジタルカメラの存在と利便性を広く一般に認知させた製品である。外部記録装置なしで96枚撮影ができ、本体定価6万5,000円を実現して好評だった。写真の様に鮮麗ではないが、ポストカードに背景画像を付けるための使用等には事足りていた[1]。一番のメリットは、液晶パネルを搭載し、撮影画像をその場で確認できることである。また当時はWindows 95ブームで一般家庭にパソコンやカラープリンターが普及し始めた時期であったため、パソコンに画像を取り込むことが広く認知された[1]。この機種はNHKの番組「プロジェクトX〜挑戦者たち〜」090回「男たちの復活戦 デジタルカメラに賭ける」[11]において、あたかも世界初のデジタルカメラのように紹介された(ただし、撮影画像をその場で確認できる液晶パネルを搭載したデジタルカメラとしては世界初である)。
QV-10の成功を皮切りに多くの電機企業が一般消費者向けデジタルカメラの開発・製造を始めた。QV-10発売の2か月後にリコーから発売されたDC-1にはカメラとしては初めての動画記録機能がある。その記録方法としてJPEGの連続画像(後にMotion JPEGと呼ばれる方式)を採用した。
この頃の製品はまだ画質も電池寿命もそれほど良くなく、存在が認知されたとは言え購入層もその使われ方も限定的で、性能もしばらくフィルムカメラを追い越すことはないと思われていた。
1999年(平成11年)末から始まった高画素数化競争や小型化競争など、市場拡大を伴った熾烈な競争により性能は上昇、価格も下がり利便性も受けて、2002年(平成14年)にはフィルムカメラとデジタルカメラの出荷台数が逆転[12]、フィルムカメラからデジタルカメラへと市場が置き換わった。
報道関係やプロカメラマンの間でもデジタルカメラは普及した。初期には高画質でも大型で可搬性のないものであったり、専用のレンズ群が必要で価格も数百万円になるなど、一部の大手報道機関などが少数保有するだけの特別なカメラだった。1999年(平成11年)にニコンが既存の同社一眼レフ用レンズを使えるデジタルカメラ「D1」を定価65万円で発売後、各社完成度の高い低価格デジタル一眼レフを相次いで投入した。以後、速報性が重視される場面を中心に広まり、翌年のシドニーオリンピックなどを契機として報道各社を中心にデジタルカメラの導入が進んだ。撮影データをネットワーク経由で一瞬で遠隔地に送る事が出来、フィルム現像にかかる費用がなくコスト的にも優れたデジタル一眼レフは、フィルムカメラを駆逐し報道カメラの中心的な存在となった。その後、高性能化とデータ編集の容易さが支持されて、質感や仕上がりなどを重視する商用写真や美術写真にも活用範囲が広まった。
2000年(平成12年)頃から国内の光学機器メーカーだけでなく、電気機器メーカーが一般向けデジタルカメラ事業に参入し、さらには台湾や中国、韓国等のメーカーが加わった。2000年代中頃にはデジカメ市場が飽和しつつある中、カメラ付携帯電話の高機能化も加わって、店頭では販売合戦が展開されており、また2005年には京セラがデジカメ市場から撤退するなどメーカーの淘汰も始まった。
2007年に初代iPhoneが発売されて以降、高性能なカメラを搭載したスマートフォンの普及に伴い、デジカメの世界販売台数は2010年の1億2146万3234台をピークに[13]、また市場規模は2008年の2兆1,640億円をピークに[14] 減少を続けている。特に、一般消費者を主なユーザーとするレンズ一体型デジカメ(コンパクトデジカメ、コンデジ)の出荷台数は2008年の約1億857万台をピークとして、10年で1/10になるなど急激に減少した。
一方で、ハイアマチュア以上を主なユーザーとするレンズ交換式デジカメの出荷台数は2013年の約1713万台をピークとして、5年で1/2にしかならないなど減少は緩やかであり、2018年にはレンズ交換式デジカメ出荷台数1075万台に対してコンデジの出荷台数が866万台と、レンズ交換式の出荷台数がコンデジを上回った[15]。
デジタルカメラの世界総出荷台数は、2018年は約2200万台(市場規模は約7300億円)、2019年度は1522万台(市場規模は4500億円)。2020年度は世界総出荷台数は888万台(市場規模は4201億円[16])となり、ついに富士フイルム社のフイルムカメラ「チェキ」の年間販売台数(2018年度は約1005万台)を下回った。
2021年現在、メーカーの淘汰が進んでおり、世界シェアはキヤノン、ソニー、ニコン、富士フイルムの4社で約9割、パナソニックを加えると約9割5分を占める。特にキヤノンは2003年に初めてシェア1位となって以降、デジカメ市場で不動の1位として2020年度には約48 %の市場シェアを占めるが、市場自体が急激な右肩下がりであるため、キヤノンは2020年4〜6月期に史上初の四半期赤字に転落した。2018年にはカシオがデジタルカメラ事業から撤退、2020年にはオリンパスがデジタルカメラ事業を投資ファンドに売却するなど苦しい状態が続いている。
実態としてはおおむね下記の通りである。分類が困難な機種もある。
デジタルカメラの全体的な構成は、大きく分けて光学系と電子系、そしてそれらを保持する筐体に分類できる[注 3]。 光学系はレンズと絞り機構であり、一眼レフでは光学式ファインダー用のレフレックスミラーとプリズムがこれらに加わる。機械式のシャッター機構を備えるものもある。電子系は受光素子とメモリーを含む画像演算回路、記録装置、液晶表示器、ストロボ、操作スイッチ、電池などである[注 4]。
光学信号である画像を電気に変換する撮像素子(光学センサ)は、CCDイメージセンサかCMOSイメージセンサが用いられる。この点が光化学反応を用いる銀塩フィルム式のフィルムカメラと異なる。撮像素子の受光面の大きさは、通常のフィルムカメラで用いられる35 mm判フィルムの1コマよりも小さいものが大多数である[注 11]。半導体素子そのものである撮像素子は、その大きさが部品価格の主要な決定要素であるため、比較的廉価なコンパクトデジカメでは1/3インチから2/3インチが、上位価格帯を占める一眼レフタイプではより大きなAPS-Cサイズが用いられる。また、一部の高級機種や業務用機種には35 mmフルサイズや中判など、銀塩フィルムと同等サイズの撮像素子を搭載する製品もある[注 12]。
撮像素子は2000年頃までCCDが主流で、画質が劣ったCMOSは一部の安価な機種に搭載されるのみだった。その後、CMOSイメージセンサの性能が向上して多くの問題点も対処が進められた。CMOSの特徴である低消費電力性や低価格なこともあり、一眼レフを中心にCMOS搭載機種が増えてきている[注 13][21]。CMOSによるデジタル回路を同じシリコン基板上に構築しやすいので高機能な駆動回路をセンサ側に作るのに向いており、例えばA/D変換回路を内蔵するものがある[注 14]。
一般に撮像素子が大きいほど色再現性、感度、ノイズ、ダイナミックレンジなどあらゆる点で有利である。とくに同じ時代に設計された撮像素子同士の比較ではサイズにより画質の差があり、測定値にも表れる。また、同じ画角・同じF値における被写界深度が浅くなるため、対象物だけにピントを合わせて背景から浮き上がらせるボケの効果が得られやすい。反面、撮像素子が大きいとボディが大型化し、高価になる。また画素数が多いほど描写は精細になり、大きなサイズでのDPE依頼やフォトプリントでも精細な画像が得られる。撮像素子のサイズを変えずに画素数を増やすと、1画素あたりの面積が小さくなる。ダイナミックレンジが狭くなる、電気的なノイズ・歪みが多くなることからむしろ画質を損なう場合もあるので、撮像素子や処理回路でノイズを抑える設計が必要であるため、画素数を増やすことには限界がある[注 15]。コンパクトなボディに大きな撮像素子を搭載した機種も存在する[注 16][注 17][23][注 18]。
2010年現在用いられている撮像素子の多くが、1つの画素で多様な色の識別は行えず、画素を構成するそれぞれのフォトダイオードの上に RGB(CMY)[注 19][23] の内のいずれか1色のフィルターを配置することでそれぞれの色を検出する[注 20]。このため、多様な色が検出できる最小単位は、少なくとも3画素である。続く画像処理部では、それぞれの画素には本来測光しなかった他の2色分の色情報を周囲の色から作り出すという処理が行われる場合があり[注 21]、「偽色」と呼ばれる、誤った色情報を生成したり不自然なノイズが生じる原因である。このようなノイズや画素数の実質的な減少を避けて、可能な限り画素数を増やしたいプロ仕様の上級機種では、入射光を3個ほどのプリズムによって CMY(RGB) という波長帯別に分離してから、それぞれの光を1枚ごとの撮像素子で電気に変換する仕組みを備えるものもある[注 22][24]。
フィルムカメラのファインダーには幾つか異なる方式があるものの、全て光学式だった。デジタルカメラの場合も同様の構造が可能だが、多くのデジタルカメラは撮像素子で得た画像データを本体背面などのカラー液晶で表示することでファインダーとしている。また、いわゆる「ミラーレス一眼カメラ」では、従来の一眼レフカメラと同等の位置にカラー液晶を使ったファインダーを配置しているものが多い。この電子式ファインダーはプリズムやミラー、光路を必要とする光学式に比べて設計上の自由度が高いが、2019年現在では撮影直後に表示が一時停止するモデルが多いといった問題もある。また単に撮影画像を表示するだけでなく、電子機器であるデジタルカメラ本体の操作画面としてや、画像編集といった付加的な機能にも利用される[注 23]。
背面液晶式カメラの多くでは液晶表示部が背面に固定されているが、これを可動としたのがいわゆるバリアングル液晶であり、撮影者の視点や姿勢にあまり制約されることなく、ローアングル(低い位置からの撮影)やハイアングル(高い位置からの撮影)などの撮影が容易になった。
フィルムカメラでもデジタルカメラでも同様であるが、実際に撮影させる画像とファインダーで見える画像とが必ず同じ範囲であるとは限らない。実記録画像が100 %としたときのファインダー画像の大きさを%で示す「ファインダー視野率」という指標がある。デジタルカメラでは、比較的100 %のものが多い[24][注 24][23][注 25]。
シャッターボタンを含む操作用のスイッチ類は、人間工学に基づき配慮されている。一部の機種では電子式ファインダーである液晶画面にタッチパネルを組み込むことで、ファインダーの画面が操作面となるものもある。
撮像素子からのアナログ信号はアンプによって増幅され、高速アナログ/デジタル変換器によってデジタル信号に変換された後、DRAMのような半導体記憶素子に一時記憶として蓄えられる。画像処理専用に作られたASICが、この一時記憶領域から必要なサイズの画素を読み出しては演算処理を行い、一時記憶へ書き戻す。イメージセンサの画素数の増加とそれに伴い求められる処理性能の上昇に合わせて、次々と演算処理速度の高いICが開発されている[注 26][24] [注 27]。
画像を記録するには、一般にフラッシュメモリが使用される。ICチップによる内蔵固定式やメモリカードを差し込む内蔵交換式などの記録媒体がある。
画像をやり取りするために外部との接続端子を持つ機種では、USB端子を備えるものが多い。メモリーカードをパソコンやプリンターに差し込んで接続したり、DPE店へ預けたりする方法でも画像情報を利用することが可能である。パソコンのすべてが適切なメモリーカード用スロットと備えているわけではなく、多くの機種ではUSBのような汎用的なインタフェースを備えることで、カメラ側にメモリーカードを装着したままパソコンなどで読み書きできるようにしていることが多い。
また、USBを経由することで、戸外で多くの撮影を行う場合でも、ノートパソコンなどよりも小型軽量のUSB対応外部記憶装置へ画像情報を大量に保存するような利用法が可能である。USB経由でプリンターへの出力も可能である。
ほとんどの機種では夜間撮影などのためにストロボ発光機能を備えている。必要な電圧までコンデンサに充電することで電気エネルギーを蓄えて、シャッターボタンによる操作でストロボを発光させる。ただし、コンパクトデジカメのストロボは3 - 5 m程度の距離しか有効な光量を作れない[25]。またコンパクトカメラでも上級機や、一眼レフカメラ・ミラーレス一眼カメラのほとんどの機種では筐体上部などにアクセサリーシューが付いており、オプションで外部ストロボが取り付けられる。
携帯電子機器であるデジタルカメラの電源はほとんどが、内蔵される充電式バッテリーによる。デジタルカメラはほとんどすべての機能が電子回路によって実現されているため、フィルムカメラよりも消費電力が大きい。比較的多くの枚数を記録できることもあって、大容量で大きく重いバッテリーを内蔵していることが一般的である。ほかの方式より軽量で容量の大きい専用のリチウムイオン電池を採用する機種が多い。シャッターを切ったりフラッシュメモリに書き込んだりフラッシュライトを点灯する時は特に大電流が必要であるため、このパルス放電に対応したバッテリーとしてニッケル水素電池が多くの機種で採用された。ニッケル水素電池を外出先で消費し切った場合は、入手性の高いアルカリ乾電池が使用可能であるものが多い[21][注 31][注 32]。メーカーはカメラ本体だけでなく、消耗品、周辺機器も含めたトータルで利益が出ればよい。特に電池はメーカー、機種ごとに異なることが多いので、予備の電池が必要な場合、新しいカメラを購入したときは電池も購入する必要がある。予備電池の価格は比較的高めにつけられている場合が多い。そのため、純正品以外にも多くの互換電池が出回っている。代表的なメーカーに、台湾のロワなどがある。稀にではあるが純正以外の電池使用により異常発熱や膨張、機器破損の事故も発生しており、カメラメーカーの中には互換電池を使用できないようにカメラ本体側にプロテクトを施しているメーカーもある。
不安定な手持ちでの操作や衝撃・塵埃の多い環境で用いられることが多いカメラの本体を構成する筐体(ボディ)には、内部の脆弱な光学部品や電子部品を支え保護するために堅牢性や気密性を維持することが求められ、同時に軽量であることが求められる。筐体は、アルミ合金等の金属製の骨格に、多数のエンジニアリングプラスチックなどの合成樹脂によるフタやグリップ、緩衝材が取り付けられているのが一般的である。
基本的な静止画撮影の動作を以下に順を追って示す。
静止画撮像では、カメラが電子的に捉えた画像のコントラスト情報を元に自動的にカメラ側でピントを合わせるオートフォーカス (AF) 機能を使って撮影することがアマチュアを中心に一般的である。撮影時にシャッターボタンを半押しにするとAF機能が作動するモードが中心である。撮影可能状態にすればオートフォーカスが常に働き、いつでもシャッターが切れるモードも選択できる機種がある。前者では電池の消費が抑えられ、後者ではシャッターチャンスを逃がす可能性が低くなる。ただし、AF機能は動きの早い被写体や陰影差の少ない対象には向かず、AFロックといった撮影者の工夫やマニュアル・フォーカスなどが求められる。高級機ではコントラスト情報以外でもピント合わせが可能であったり、マニュアル・フォーカス機能の操作性なども考慮されているものがある[21][23][注 33]。
露光時間は機械式や電子式のシャッターで制御するが、上手に露光時間を選ばないと被写体の明暗度合いによっては撮像素子が明部と暗部のいずれかが露光過剰や露光不足によって「白とび」や「黒つぶれ」を起こす。「白とび」「黒つぶれ」を回避するために、銀塩カメラでは受光する枠内に測光素子を多数配置して最も明るいところと最も暗いところを検知する。また、コンパクトデジタルカメラでは電子的な撮像素子そのものが測光素子を兼ねて、露光を自動調整する[注 34]。ただし撮像素子は読み出しに多少の時間が掛かるので、瞬間的に明るさの変化する撮影対象では正確な露光が期待できない。ほとんどのデジタル一眼レフ機では、撮像素子とは別に測光専用のセンサーで露出を決めるものが多い[注 35][21][23]。
フィルムカメラの上位機種でも備えるものがあるが、オートブラケティング(Automatic Exposure Bracketing, AEB)撮影によって、露出を変えながら立て続けに2-4枚ほどの撮影を行うこともできる[24]。また、オートブラケティングと同様に露出の異なる複数枚の撮影をすばやく行い、内部演算処理によって1枚のダイナミックレンジの広い画像を得る、ハイダイナミックレンジ(HDR)処理をカメラ単体で行う機種も登場している。
撮像素子から出力されたアナログデータはA/D変換された後、映像エンジン[注 36] や画像エンジンなどと呼ばれる画像処理専用のICによって、暗電流補正、補間演算、色空間変換、ガンマ補正、収差の補正、ノイズリダクション、画像圧縮などの様々な画像処理が行なわれ、外部利用に適した画像形式に変換される。 たとえ同じ撮像素子を使っていても、カメラのメーカーが異なっていれば画質の傾向も違ってくる。画像処理のアルゴリズムが出力される画質を左右するため、メーカーでは様々な工夫を行っている[注 37]。かつてはこの処理に時間が掛かるのがデジタルカメラの問題点の1つであったが、今ではデジタル演算能力の向上によってほぼ解決されている。
映像エンジンで画像処理が施されたり、またはRAWデータのままの静止画情報は、記録媒体に書き込まれて保存される。フラッシュメモリー素子のデータ転送速度は年々高速化しているが、一方で画像データサイズの肥大化もあって、一般に記録動作には時間が掛かる。
上記の他にも、TIFF、DPOFなどがある。
デジタルカメラが登場した当初は、性能は銀塩カメラより劣った。主に電子技術の急速な発達によって解像度や感度が銀塩カメラに追いつくほど技術開発が進み、銀塩カメラを広範囲に置き換えた。そして、単に静止画を撮影する基本機能の充実だけでなく、デジタル式にしかできない付加的な機能を付け加える方向へ技術開発がされている[注 39]。
デジタル画像処理によりズームを行う方式。ズームレンズを用いた光学式ズームと同時使用可能である。
イメージセンサーの中央部の画素のみを撮影に使用し、拡大することで画像を作成するズーム方式。ズーム倍率に応じて使用可能な最高画素数は減少する。例えば、1200万画素機で2倍ズームにすると、その場合の画素数は縦横共に半分になるのでイメージセンサーの中央部の300万画素を使用する。画像を記録する際の記録フォーマットが4096×3072(1200万画素分)であれば、不足する900万画素分の情報が300万画素からの補間処理によって生成される。
2倍程度までのズームについては各社で特別な補間処理を行い、単なるデジタルズームと差別化している場合がある[26][27]。
画質の劣化を抑えるため、記録する画素数に合わせてデジタルズームの最大倍率を変え、等倍以上の拡大を避ける設定が可能な機種もある。
保存する画像の画素数でイメージセンサーの中央部をトリミングするズーム方式。イメージセンサーの画素数よりも少ない画素数で保存する場合に使用できる。デジタルズームと異なり拡大処理を行わないため拡大に起因する画像の劣化がない。
イメージセンサーの画素数よりも少ない画素数で保存する場合、光学ズームが可能な範囲では画像を保存する際に縮小処理が行われる。光学ズームの限界を超えるとイメージセンサーの全面を使用することをやめ、中央部をトリミングして縮小率を下げた画像を保存する。この光学ズームの限界から縮小処理が不要になるまでのズームがトリミング式ズームである[26]。トリミング式ズームの限界の後はデジタルズームを使用できる。
スマートズーム、EX光学ズーム、ファインズーム、セーフティズーム等各社が同様の機能をそれぞれ名前をつけており、共通の呼称は定まっていない。
カメラの撮影での手ぶれを、光学的や物理的に検知してそれを打ち消すようにレンズ系の光軸や受光面を動かす「手ぶれ補正機能」を備える機種が多い[注 40]。
コンパクトデジタルカメラの多くが動画の撮影機能を備えており、一眼タイプにおいても一般的になりつつある。連続撮影時間は、記録解像度と記録方式、記録メディアとバッテリーの容量、製品用途の位置付けなどにより10分から1時間程度に制限される。デジタルカメラの撮像素子の画素数は一般的な動画を撮影するデジタルカムコーダのそれよりも多いため、動画の撮影時には画素情報を間引いて情報量を少なくする[23]。
動画フォーマットについては機種ごとにさまざまである。以前はAVI (Motion JPEG) やQuickTimeによる動画録画とWAVE(モノラル)による音声録音が主流だった。MPEG-4 AVC/H.264とドルビーデジタル AC-3(ステレオ)、MPEG-2 TSを用いたAVCHDによるハイビジョン動画およびステレオ録音が可能な機種も増えており、デジタルカムコーダ(いわゆるデジタルビデオカメラ)との境界線があいまいになってきていたが、EUがヨーロッパにデジタルカムコーダーメーカーが無い事を理由にHD解像度以上で30分以上録画できるデジタルカメラをデジタルカムコーダーとして分類し[28]、デジタルカムコーダーと同等の30 %の関税を設定した。その為、デジタルカメラはデジタルカムコーダーとは異なり、30分以上連続で録画できなくしてある。
カメラ本体内にGPS受信機を内蔵し、撮影地点の位置情報を画像データと共に記録することで撮影後に位置を確認できる機種が販売されている。地図データを内蔵するものでは、撮影地を地図で確認したり、現在地や移動経路を表示してナビゲーションに利用することも可能である。
カメラ本体内に無線LAN通信部を内蔵し、撮影した画像データ等をパーソナルコンピュータやスマートフォンに転送したり、ソーシャル・ネットワーキング・サービスと連携することで直接アップロードする機能を有するものもある。転送にはWi-Fi,Bluetooth,NFC等が用いられる他、SDカードスロットを利用して通信機能を追加することでTransferJetで転送を行う場合もある。 また、スマートフォンやタブレット (コンピュータ)の液晶画面を用いたリモート操作に対応する機種もある。
記録メディア内のデータをパソコンへ読み込ませた際、画像ファイルが壊れていたり、記録自体されていなかったりするトラブルが発生する。このような事態を防ぐためには、『データ記録中にカードを抜く』『データ記録中に電池を抜く』といった誤操作をしないこと、『データ記録中のデジタルカメラ本体への衝撃』を避ける、『メモリカードスロット用クリーナーカード等を用いて定期的に手入れをする』などが必要である。
また、誤操作で画像データを削除してしまった場合でも、データ復旧用アプリケーションを用いるか、専門業者のデータ復旧サービスを利用することで一部または全てのデータを取り戻せることがある。その際、復旧作業が終わるまではその記録メディアに一切の書き込みをしないことが重要である。書き込みをしてしまうと復旧の可能性が低下する。
パソコンへの画像データの転送については、記録したメモリーカードによる方法の他、多くの機種ではUSB接続による方法もサポートしている。この場合、付属ソフトウェアやWindowsなどのOSの機能を用いてデジタルカメラから画像データを転送するもの(PTPなど)と、カメラを外部記憶装置(マスストレージ)のように見せて自由に画像ファイルの出し入れが可能なものがある。USB普及以前は、シリアルポートやSCSIを使用するものもあった。またUSBがまだ十分な転送速度でない頃は、プロ向けの機種の中にはIEEE 1394を採用するものもあった。さらに近年は無線LANを使用するものもあるが、メーカーによりまちまちの実装である。
2003年からは、デジタルカメラ本体と対応プリンターをUSBケーブルで直接接続して印刷できる「PictBridge」などの規格も制定された。
デジタルカメラに内蔵されている撮像素子は、有効画素数と総画素数の違いに留意する必要がある。総画素数は撮像素子が本来持っている画素の総数であるが、デジタルカメラに内蔵する場合にレンズや絞りといった光学系の制約によって撮像素子の受光部全体に入射光を厳密・均等に当てることは難しい。カメラに装着された状態で光が当たる画素の総数が有効画素数と呼ばれて、総画素数より数%程小さい[24]。1990年代後半から2000年代にかけて、画素の数は販売戦略上の大きなアピールポイントであった。一般論としては、画素数の大きな方が、より詳細まで表現でき高画質であるが、画素数を大きくすればその分一画素あたりの受光面積は減り、ノイズが増えることにも留意する必要がある。画素数を増やすとともに、いかにノイズを控えるかが素子開発の大きなポイントであった。2010年代に入り、画素数増加とともに一画素のサイズがレンズの光学的解像度の限界に近づき、画素数競争も一段落しつつある。
CCDやCMOSの撮像素子の大きさは、テレビ画面を表すのと同様に「型」が使われることが多いが、撮像素子の受光面の対角線の長さのインチ単位の大きさよりも大きな値になる。これは昔の真空管式の撮像管の時代に、撮像面の大きさではなく管の直径を表示していた名残りである[24]。また、面積だけでなく縦横比も撮像素子によって異なり、同一メーカーであっても機種によって違いがある。
コンパクトデジタルカメラの多くが、内部での画像処理で輪郭強調処理を行い、実体よりもシャープに見せている。こういったカメラの使用者の多くが、「シャープネス」の効いた出力のほうがピントの合った画像だと歓迎するためである。プロが使用する上級機では出力画像はシャープネスを効かせず、もしもそういった加工が必要ならば、カメラ上ではなくパソコンなどの画像処理ソフトによって精密に調整する。画像は輪郭強調やソフトフィルターを掛けるたびに劣化するので、手間を惜しまないならばカメラの外で処理するのが良い[23]。
2018年の日本国内でのシェアは、1位キヤノン、2位ニコン、3位ソニーの3社によって約90 %を占め、富士フイルム、パナソニック、オリンパス、リコーなど「その他」の企業が残りの10 %の中にひしめいている。世界のデジカメ市場(金額ではなく台数ベース)では、1位キヤノン、2位ソニー、3位ニコンの3社によって約85 %を占めるが、そこに4位の富士フイルムと5位のパナソニック(それぞれ数%)を加えるとシェアが9割を超え、つまり世界デジカメ市場の9割を日本企業が占有している[35]。2020年現在の市場規模は世界全体で約4201億円であるが、毎年数十パーセントの規模で縮退しており、先行きが不透明である。
デジタルカメラの販売は、2007年に初めて1億台を突破し2010年の1.2億台がピークであり、2010年代には特にスマートフォンの普及によりコンパクトデジタルカメラの販売が激減している。レンズ交換式デジタルカメラの販売台数は2013年をピークとして徐々に減っているが、コンデジほどの大きな変動は見られていない。2020年にはコロナウイルスによるパンデミックもあり、販売台数が前年比で40 %以上縮小した結果、ピーク時の14分の1まで市場が縮退した。
デジカメはフィルムカメラに較べると電子機器的な要素を多く含むため、2000年代には旧来のカメラメーカーに加えて、ソニー、パナソニック(経営統合前の三洋電機を含む)、カシオ計算機などの家電・電子機器メーカーも参加して激しいシェア争いを繰り広げていた。2002年頃まではオリンパスや富士フイルムがシェア1位を争っていた時代もあったが、キヤノンが2003年にデジカメ市場のシェア1位(コンデジ・一眼レフ共に)となり、ニコンが一眼レフ市場2位となった後、結局はフイルムカメラ最大手であったキヤノンとニコンがデジカメでも最大手であり続け、競合とのシェアを引き離し続ける状況が続いていた。
競争の激化に伴い、2005年に京セラが日本国内のデジタルカメラ事業から撤退。2006年にはコニカミノルタがカメラ事業全般から撤退し、一眼レフカメラ部門をソニーに譲渡した。また、イーストマン・コダックも消費者向けデジタルカメラの生産から撤退し、デジタルカメラ製造部門をフレクストロニクス・インターナショナルに売却している(開発・設計・販売は継続)。2009年にパナソニックに吸収された三洋電機のカメラ部門はXactiに継承された。
デジタル一眼レフカメラは、コニカミノルタの一眼レフカメラ部門を引き継いだソニーや、オリンパスと協業しフォーサーズシステムへ参入したパナソニック、ペンタックスとの提携でサムスン電子なども参入した。2008年にパナソニックが先陣を切ってミラーレス一眼カメラを発売し、2013年にソニーがフルサイズのミラーレス一眼を開発し、以降の一眼レフ市場を方向付けた。技術的な困難さと、交換レンズを始めとするオプション類も販売する必要があるため、技術の蓄積がある光学機器メーカー(具体的にはキヤノンとニコン)か、それらの事業を引き継いだメーカー(具体的にはソニー)が残り、新規参入した家電メーカーなどは、ミラーレス一眼へと移行するか、コンパクトカメラのみに規模を縮小した。
旧来のカメラメーカーはレンズの設計に一日の長があるが、電機メーカーはイメージセンサの製造に長けている。家電メーカーの場合、光学系の設計ノウハウが乏しく設備の新設にもコストがかかるため、他のレンズメーカーから光学系部品の供給を受ける場合がある[注 41]。さらに、光学機器メーカーに比べて劣る知名度を補うため、「ライカ」や「カール・ツァイス」といった有名ブランドを冠したレンズを採用することもある[注 42]。メーカーによってはOEMとしてレンズの供給を受けるのではなく、同ブランド名を冠するレンズを自社内やレンズメーカーでライセンス生産している場合もある。
逆に光学機器メーカーが、撮像素子や画像エンジンなどの電子系統を、競合の家電メーカーにOEM委託をしていることも多い。EMSの委託先としては台湾のメーカーなどがある。特に撮像素子は、ソニー、OmniVision、サムスンで世界市場の7割以上を占めている。したがって、上に書いたメーカー別販売シェアと、実際の製造メーカー(OEM製造も含む)におけるシェアとは大きく異なる。2012年当時の他社向けOEMを含めた生産台数別のシェアを見た場合、全てのデジカメを自社製造で賄うデジカメ市場1位のキヤノンが生産台数でも1位であったが、カメラ生産台数2位が佳能企業、3位が華晶科技と、実際の生産台数では日本メーカーではなく中国や台湾のメーカーが上位を占めた[36]。2012年当時デジカメ市場2位のニコンは、一眼レフに関してはすべて自社生産だが、コンデジには力を入れておらず、コンデジに関しては全て他社製造品のOEMであった。また、上記のメーカー以外にもセイコーエプソン(R-D1など)や、ライカなどがレンジファインダー式デジタルカメラの製造を行っている。2017年の時点では、本体・レンズ・撮像素子の三要素を自社製でまかなえるのは、キヤノン、ソニー、シグマ(Foveonを子会社化)の3社となっている。特に撮像素子は、ソニー系列のソニーセミコンダクタマニュファクチャリングが、ニコン・ペンタックス・オリンパス・富士フイルム・ライカなどにも画像センサーを製造・供給している一大センサーメーカーとなっている。
2010年以降は、ミラーレス一眼カメラで成功したソニーがキヤノンとニコン以外の「その他」のメーカーの中から頭一つ抜けて、デジカメ市場3位となった。また、コンパクトデジタルカメラの市場はカメラ搭載のスマートフォンによる浸食が進んでおり、デジカメ市場上位3社のキヤノン・ニコン・ソニー以外のメーカーにおいては撤退が相次いでいる[37][38]。こうした状況を踏まえ、2013年当時の経済産業省は日本企業の競争力強化に向けた取り組みを進めようとしていたが[39]、その後もデジカメ市場はスマホに侵食される一方であり、各社で生産体制の縮小や撤退が続いた。2015年には、サムスンが最後となるモデルを発表した後に撤退[40] したほか、2017年には、ニコンが中国江蘇省無錫市の工場で行ってきたコンパクトカメラの生産を終了し、タイの工場へ生産拠点を集約[41]、2021年には国内生産も終了した[42]。2018年、オリンパスも深圳の工場で行ってきたデジタルカメラや交換レンズの製造を終了し、ベトナムの工場へ生産拠点を集約している[43]。同年には、カシオのコンパクトデジタルカメラ事業からの撤退も発表されている[44]。2021年には、オリンパスはデジカメなどの映像事業を分社化・譲渡し、OMデジタルソリューションズがオリンパスのデジカメブランドを引き継いでいる。2020年には初めてミラーレス機が一眼レフの売り上げを上回った[45]。
こうした状況を経て、2020年にはキヤノンとソニーが入門機からハイエンドまでを押さえた二強の地位を獲得し、スマホに市場を奪われてコンデジでは採算が取れなくなった他メーカーはハイエンド機に専念する業界構造となりつつある。
機能や画質を割り切ることで低価格な「トイデジカメ」と呼ばれる分野が存在する。玩具の流通ルートで売られていることが多い。 近年(2016年現在)では携帯電話に搭載されたカメラの性能向上によりジャンルそのものが衰退しつつある。携帯電話のアプリではトイカメラ特有の歪み・ぼけ・色調等の独特の光学効果を再現している[46][47]。
同ジャンルの初期に流通したトイデジカメの例としてタカラのSTICK SHOTやニチメンのChe-ez!などがあり、デジタルカメラが高価だった頃、小型軽量で1万円以下で買える手軽さが受けてガジェット好きのユーザーに広まった。
初期の大半の製品が10万画素から35万画素ほどのCMOSを搭載し、増設できない1メガバイト程度の記録メモリーを搭載する。パソコンと通信することはできても、カメラだけで直接記録した画像を確認できるようなデバイスは存在しない。画質はおしなべて低く、色の再現性が悪い。一方、これらの中にはWebカメラとして使用できるものもあり、そのためにトイデジカメを購入するパソコンユーザーもいた。
現在では日本の一流メーカーのデジカメが実売で8000円を切るまでに低価格化しているうえ、トイデジカメの高機能化が進み、それらを区別する意味もなくなってきている。このような状況から、現在では「トイデジカメ」という概念が「安い」から「アクセサリーとして楽しむ」などの方向に変わっている。例としてボールペンや腕時計にカモフラージュした製品、フィルム時代の高級カメラをミニチュア化した製品などが一定の人気を保っている。また、単に低画質な製品を「トイ」扱いしている場合もある。
2010年春現在で販売が継続しているトイデジカメは、その定義を「小型軽量低価格で、手軽ではあるが低性能」とする場合、当てはまるのはVista Questシリーズと、同シリーズのうち1005ベースとなる「NICO DIGI」(ニコデジ)程度である。
機能や価格帯は考えず遊びの要素が強い製品として、プラスティックむき出しの質感やクセのある撮影画像など、同ジャンルの基本を意識し、楽しく撮ることを目標とした「DIGITAL HARINEZUMI」(デジタルハリネズミ)シリーズ、簡易防水機能付きとしては安価な部類で、わざと撮影画像のカラーバランスを崩した撮影ができる「GIZMON Rainbowfish」(ギズモン レインボーフィッシュ)、ローライの本格的二眼レフカメラ、ローライレフレックスの外観を忠実に模して小型化した「ローライレフレックスミニデジ」(Rolleiflex MiniDigi )シリーズなどがある。
2012年のデジタルカメラの世界シェアは以下の通りであり、出荷台数の1位から3位までを日本メーカーが占める(数字はパーセント)[注 43]。
22.6 | 20.9 | 14.8 | 9.4 | 8.1 | 24.2 | |
キヤノン (日本) | ニコン (日本) | ソニー (日本) | サムスン (韓国) | 富士フイルム (日本) | その他 |
日本国内におけるデジタルカメラ1台あたりの平均販売価格はコンデジが約2万200円、一眼タイプが約8万5,400円である(2009年12月度、BCN調べ)。
売れ筋のキーワードは2003年頃までは画素数など、2004年には動画撮影性能や多彩なシーンモードなど、2005年には大型液晶・高感度・手ブレ補正などであった。2006年は一眼レフに「ライブビュー」が搭載されるようになり、急激な低価格化と相まって一眼レフの一般への浸透が進んだ。2007年には顔認識が登場し、人の顔が綺麗に撮れる、笑顔になるとシャッターが切れる機能などが流行した。2008年は暗所撮影や防水機能など「場所を問わず綺麗に撮れる」性能や、より広い角度を写せる「広角ズーム」が売りとなった。
2009年は明暗差の激しいシーンでも白飛びや黒つぶれが発生しにくい「ダイナミックレンジ拡張機能」、そして一度ロックした被写体にピントや露出を合わせ続ける「自動追尾機能」などが登場した。また、リコーGRデジタルIIIやキヤノンパワーショットG11など、あえて操作を自動化せず画質と高級感を優先させた高級コンパクトカメラが独自の地位を築いた。家庭にハイビジョンテレビが普及したこともあり、ハイビジョン画質の動画機能が装備されたカメラが普及し始めた。また、2008年末にフォーサーズ陣営から登場したミラーレス一眼が2009年5月以降売り上げを伸ばしている。2010年にはAPS-Cサイズのミラーレス一眼が登場、2013年に35ミリフルサイズのミラーレス一眼が登場して以降は、一眼レフから乗換のユーザーでミラーレス一眼が販売シェアを拡大、2020年に販売台数が一眼レフを逆転して以降は、ミラーレス一眼カメラがレンズ交換式デジタルカメラの主流となっている。
過去のデジタルカメラ市場はほとんど日本企業のブランドで占められており、日本国外勢はコダックや一部のスタジオ用中判機種に限られていた。最近2003年 - 2004年にはおよそ80 %であったが、日本メーカーが積極的に行っている生産設備の中国への移管による技術移転や韓国メーカーの高級機参入に加え、アメリカやドイツの歴史あるブランド名を復活させた製品も出始めた。
メーカーからは高性能のデジタルカメラが発売される一方で、古いデジタルカメラはユーザー間で「オールドデジカメ」「オールドコンデジ」として好まれて取引されておりイギリスBBCでもその傾向が報じられている[48]。
2000年頃から大手カメラ店のDPEコーナーなどでデジタルデータから印画紙に焼き付けるサービスが行われている。これは、デジタル処理のミニラボシステムを利用したもので、フィルムスキャナによる入力の代わりにデジタルカメラなどで得られたデジタルデータ(JPEGなど)を印画紙に焼き付けるものであり、従来の写真と同程度の画質や耐久性が期待できる。
また、店頭にキオスク端末型のプリント機を設置し、画面の案内に従ってセルフサービスで出力できるサービスも行われている。このタイプは昇華型熱転写プリンターを使用しており、画質面で若干見劣りする。
そのほか、コンビニや駅などで、デジタルコピー機の機能を利用したセルフサービスで写真印刷を行なう機械も設置されている。単に印画紙への出力だけではなく、シール印刷機能のような付加価値を持たせている物もある。しかし、これらも昇華型やインクジェット方式で印刷するため、印画紙での出力に比べて画質や耐久性に劣り、長期間の保管には向かない。
また、CD-Rを持っていないユーザーのために、画像データをCD-Rに焼くサービスもある。
出力したい画像ファイルをインターネット上の指定サイトにアップロードし、でき上がったプリントを店頭や郵送で受け取るサービスがある。一般に印画紙に出力されるので、ミニラボ機を使ったものと同等の品質が期待できる。また、写真集のような形に簡易製本して渡すサービスもある。
個人で撮影した画像を自宅のプリンターで印刷することが一般的になった。2003年頃からは、PictBridge(カメラ機器工業会)、USB DIRECT-PRINT(セイコーエプソン)、DIRECT PRINT(キヤノン)、BUBBLE JET DIRECT (キヤノン)などの名称で、デジタルカメラとプリンターを直接接続する通信規格が登場した。これらに対応したカメラとプリンターを直接接続することで、パソコンを介さずに印刷することが可能である。 デジタルカメラで撮影した写真の印刷を行うデジカメ専用のプリンターも登場している[注 44]。
ハイビジョンテレビとの接続用としてカメラ本体にHDMI端子が装備されたり、テレビやレコーダー側にSDカードスロットを備えた製品も増え、リビングの大型テレビで鑑賞することができる。
カメラ本体の機能ではないが、無料で利用できるオンラインアルバム(Flickr、Google フォトなど)や動画共有サービス(YouTubeなど)が増えており、それらを通じて仲間と写真を共有したり、不特定多数に向けて写真を公開することが一般的になりつつある。無線LANを内蔵することでそれらのサイトに直接データを送信できるデジカメも登場している。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.