From Wikipedia, the free encyclopedia
En bioloxía, unha mutación é unha alteración na secuencia de nucleótidos do xenoma dun organismo, virus ou ADN extracromosómico.[1] As mutacións que se orixinan por erros durante a replicación do ADN, mitose e meiose ou outros tipos de danos no ADN (como dímeros de pirimidina que poden ser causados pola exposición á radiación ou aos carcinóxenos). Eses danos poden despois sufrir unha reparación tendente ao erro (especialmente a unión de extremos mediada por microhomoloxía[2]) ou pode orixinarse un erro durante outras formas de reparación[3][4] ou mesmo durante a replicación (síntese translesión). As mutacións poden tamén ser o resultado dunha inserción ou deleción de segmentos do ADN debido a elementos xenéticos móbiles.[5][6][7]
As mutacións non sempre producen cambios discernibles nas características observables do fenotipo dun organismo. As mutacións desempeñan un papel tanto en procesos biolóxicos normais coma anormais, como a evolución, cancro e o desenvolvemento do sistema inmunitario, incluíndo a diversidade de unión (junctional diversity).
Os xenomas de virus de ARN están baseados no ARN en vez de no ADN. O xenoma viral de ARN pode ser bicatenario (como no ADN) ou monocatenario. Nalgúns destes virus (como o monocatenario VIH causante da SIDA), a replicación ocorre rapidamente, e non hai mecanismos para comprobar a exactitude da copia do xenoma. Este proceso tendente ao erro adoita orixinar moitas mutacións. Os virus de ADN sofren un menor número de mutacións.
As mutaciones poden ser moi diferentes tipos de cambios nas secuencias. As mutacións nun xene poden ás veces non ter efectos, ou alterar o produto xénico ou impedir que o xene funcione correctamente ou completamente. Poden ocorrer tamén en rexións non xénicas. Un estudo de 2007 sobre a variación xenética entre varias especies da mosca Drosophila indicou que se unha mutación cambia unha proteína producida por un xene, o resultado é probablemente nocivo, e estimouse un 70% de polimorfismo de aminoácidos que teñen efectos prexudiciais e o resto son ou neutros ou marxinalmente beneficiosos.[8] Debido aos efectos daniños que poden ter as mutacións nos xenes, os seres vivos teñen mecanismos como a reparación do ADN para impedir ou corrixir as mutacións, revertendo a secuencia mutada ao seu estado orixinal.[5]
As mutacións poden consistir en duplicacións de grandes seccións do ADN, xeralmente por recombinación xenética.[9] Estas duplicacións son unha das principais fontes para a evolución de novos xenes, na que están implicados centos de xenes duplicados nos xenomas animais cada millóns de anos.[10] A maioría dos xenes pertencen a familias xénicas grandes que descenden dun mesmo xene, detectables pola súa homoloxía de secuencia.[11] Os novos xenes son producidos por varios métodos, comunmente pola duplicación e mutación dun xene ancestral ou por partes recombinads de diferentes xenes para formar novas combinacións con novas funcións.[12][13]
Aquí, os dominios proteicos actúan como módulos, cada un dos cales ten unha función particular e independente, que pode ser mesturada para producir xenes que codifican novas proteínas con novas propiedades.[14] Por exemplo, o ollo humano usa catro xenes para construír estruturas sensibles á luz: tres para os conos da retina ou visión das cores e unha para os bastóns ou visión nocturna; os catro orixináronse a partir dun único xene ancestral.[15] Outra vantaxe de duplicar un xene (ou mesmo un xenoma enteiro) é que este incremente a súa redundancia; isto permite que un xene do par adquira unha nova función, mentres que a outra copia realiza a función orixinal.[16][17] Outros tipos de mutacións crean ocasionalmente novos xenes a partir de ADN que previamente era non codificante.[18][19]
Os cambios no número de cromosomas poden orixinar mutacións incluso máis grandes, nas que segmentos de ADN dos cromosomas rompen e recolócanse. Por exemplo, nos Homininae, fusionáronse dous cromosomas para producir o cromosoma 2 humano; esta fusión non ocorreu na liñaxe doutros simios, os cales manteñen estes cromosomas separados, polo que teñen un par de cromosomas máis que os humanos.[20] Na evolución, o papel máis importante deste tipo de rearranxos cromosómicos pode ser o de acelerar a diverxencia dunha poboación en novas especies ao faceren menos probable que as pobaociósn se hibriden, conservando así as diferenzas xenéticas entre elas.[21]
As secuencias de ADN que poden moverse polo xenoma, como os transposóns, constitúen unha fracción importante do material xenético de plantas e animais e puideron ter sido importantes na evolución dos xenomas.[22] Por exemplo, no xenoma humano existen máis dun millón de copias de secuencias Alu e estas secuencias foron agora en moitos casos recrutadas para realizar funcións como a regulación da expresión xénica.[23] Outro efecto destas secuencias de ADN móbiles é que cando se moven dentro dun xenoma, poden facer mutar ou eliminar xenes existentes e así producir diversidade xenética.[6]
As mutacións non letais acumúlanse dentro do acervo xenético e fan aumentar as variacións xenéticas.[24] A abundancia dalgúns cambios xenéticos dentro do acervo xenético pode ser reducido pola selección natural, mentres que outras mutacións "máis favorables" poden acumularse e ter como resultado cambios adaptativos.
Por exemplo, unha bolboreta pode producir descendencia con novas mutacións. A maioría destas mutacións non terán efectos; pero unha podería cambiar a cor da descendencia da bolboreta, facendo máis difícil (ou máis doado) para os predadores vela. Se este cambio de cor é vantaxoso, as posibilidades de supervivencia desta bolboreta e de que produza a súa propia descendencia serán algo mellores, e co tempo o número de bolboretas con esta mutación poden formar unha porcentaxe máis grande da poboación.
As mutacións neutras defínense como mutacións cuxos efectos non inflúen na fitness dun individuo. A súa frecuencia pode incrementarse co tempo debido á deriva xenética. Crese que a maioría das mutacións non teñen un efecto significativo sobre a fitness dun organismo.[25] Ademais, os mecanismos de reparación do ADN poden arranxar a maioría dos cambios antes de que se convertan en mutacións permanentes e moitos organismos teñen mecanismos para eliminar células somáticas que doutro modo quedarían permanentemente mutadas.
As mutacións beneficiosas poden mellorar o éxito reprodutivo.[26][27]
Catro clases de mutacións naturais son: (1) mutacións espontáneas (degradación molecular), (2) mutacións debidas ao bypass de replicación tendente ao erro de danos no ADN por causas naturais (tamén chamadas síntese translesión tendente ao erro), (3) erros introducidos durante a reparación do ADN, e (4) mutacións inducidas causadas por mutáxenos. Os científicos tamén poden introducir deliberadamente secuencias mutantes por manipulación do ADN para faceren experimentos científicos.
Un estudo de 2017 afirmou que o 66% das mutacións causantes de cancro son aleatorias, o 29% son debidas ao ambiente (a poboación estudada abranguía 69 países) e o 5% eran herdadas.[28]
Os humanos como media transmiten 60 mutacións novas aos seus fillos, pero poden transmitir máis dependendo da súa idade, e cada por cada ano de idade engádense dúas novas mutacións aos fillos.[29]
As mutacións espontáneas ocorren cunha probabilidade distinta de cero mesmo en persoas con boa saúde e células non contaminadas. Poden clasificarse de acordo ao seu cambio específico:[30]
Hai cada vez máis probas de que a maioría das mutacións que se orixinan espontaneamente débense á repicación tendente ao erro (síntese translesión) despois dun dano no ADN na febra molde. Os danos oxidativos no ADN ocorren por causas naturais e orixínanse polo menos unhas poucas miles de veces por célula e por día en humanos, aínda que a maioría son reparadas.[31] En ratos, a maioría das mutacións son causadas por síntese translesión.[32] Igualmente, en lévedos, Kunz et al.[33] atoparon que máis do 60% das substitucións dun só par de bases espontáneas e das delecións eran causadas por síntese translesión.
Aínda que as roturas de dobre febra no ADN por causas naturais ocorren a frecuencias relativamente baixas no ADN, a súa reparación a miúdo causa mutacións. A unión de extremos non homólogos (NHEJ) é o mecanismo principal para a reparación de roturas de dobre febra. A unión de extremos no homólogos afecta a uns poucos nucleótidos para permitir o aliñamento algo inexacto dos dous extremos para unilos e seguidamente engadir nucleótidos para encher os ocos. Como consecuencia, este mecanismo introduce mutacións.[34]
As mutacións inducidas son alteracións no xene causadas por estar en contacto con mutáxenos e por causas ambientais.
As mutacións inducidas a nivel molecular pode ser causadas por:
Aínda que antes se asumía que as mutacións ocorrían por azar ou eran inducidas por mutáxenos, descubríronse mecanismos moleculares que crean mutacións en bacterias e por toda a árbore da vida. Como dixo S. Rosenberg, "Estes mecanismos revelan unha imaxe de mutaxénese altamente regulada, regulada á alza temporalmente por respostas ao estrés e activada cando as células/organismos están mal adaptados aos seus ambientes, cando están sometidos a estreses, acelerando potencialente a adaptación." [38] Como son mecanismos mutaxénicos autoinducidos que incrementan a taxa de adaptación dos organismos, foron ás veces denominados mecanismos de mutaxénese adaptativos e inclúen a resposta SOS en bacterias,[39] a recombinación intracromosómica ectópica [40] e outros eventos cromosómicos como as duplicacións.[38]
A secuencia dun xene pode ser alterada de diversas maneiras.[41] As mutacións xénicas teñen efectos diversos sobre a saúde dependendo de onde ocorren e de se alteran a función de proteínas esenciais. As mutacións na estrutura dos xenes poden ser clasificadas en varios tipos, que son:
As mutacións a grande escala en estruturas cromosómicas son:
As mutacións a pequena escala afectan un xene nun ou uns poucos nucleótidos. Se só afectan un nucleótido chámanse mutacións puntuais. As mutacións a pequena escala son:
En xenética aplicada é usual falar de mutacións nocivas e beneficiosas.
Intentouse inferir a distribución dos efectos sobre a fitness usando experimentos de mutaxénese e modelos teólricos aplicados a datos de secuencias moleculares. A distribución dos efectos sobre a fitness, usados para determinar a abundancia relativa de tipos diferentes de mutacións (é dicir, fortemente prexudiciais, case neutras ou vantaxosas), é relevante para moitas cuestións evolutivas, como o mantemento da variabilidade xenética,[55] a velocidade de decadencia xenómica,[56] o mantemento da reprodución sexual por cruzamento de individuos non relacionados como oposta á endogamia[57] e a evolución do sexo e a recombinación xenética.[58] A distribución de efectos sobre a fitness pode ser rastreada pola asimetría da distribución de mutacións con efectos aparentemente graves comparada coa distribución de mutacións con efectos aparentemente leves ou ausentes.[59] En resumo, a distribución dos efectos sobre a fitness xoga un importante papel na predición da dinámica evolutiva.[60][61] Utilizáronse diversas estratexias para estudar a distribución dos efectos sobre a fitness, como os métodos teórico, experimental e analítico.
Uns dos primeiros estudos teóricos da distribución de efectos na fitness fíxoos Motoo Kimura, un influente xenetista de poboacións teórico. A súa teoría neutralista da evolución molecular propón que a maioría das novas mutacións serán altamente prexudiciais, cunha pequena fracción que é neutra.[25][73] Hiroshi Akashi propuxo máis recentemente un modelo bimodal para a distribución de efectos na fitness, con modas centradas arredor de mutacións altamente prexudiciais e neutras.[74] Ambas as teorías concordan en que a gran maioría das novas mutacións son neutras ou prexudiciais e que as mutacións vantaxosas son raras, o que foi apoiado polos resultados experimentais. Un exemplo é un estudo feito sobre a distribución de efectos na fitness das mutacións aleatorias no virus da estomatite vesicular.[62] De todas as mutacións, o 39,6% eran letais, o 31,2% eran prexudiciais non letais e o 27,1% eran neutras. Outro exemplo procede de experimentos de mutaxénese de alto rendemento con lévedos.[67] Nestes experimentos mostrouse que a distribución de efectos na fitness global é bimodal, cun agrupamento de mutacións neutras, e unha ampla distribución de mutacións prexudiciais.
Aínda que relativamente poucas mutacións son vantaxosas, aquelas que si o son xogan un importante papel nos cambios evolutivos.[75] Igual que as mutacións neutras, as mutacións vantaxosas debilmente seleccionadas poden perderse debido á deriva xenética aleatoria, pero as mutacións vantaxoas fortemente seleccionadas é máis probable que sexan fixadas. Coñecer a distribución de efectos na fitness das mutacións vantaxosas poden orixinar un incremento na capacidade de predicir a dinámica evolutiva. O traballo teórico sobre esta dstribución no caso das mutacións vantaxosas realizárono John H. Gillespie[76] e H. Allen Orr.[77] Estes investigadores propuxeron que a distribución de mutacións vantaxosas debería ser exponencial baixo unha ampla gama de condicións, o cal, en xeral, foi apoiado por estudos experimentais, polo menos para as mutacións vantaxosas fortemente seleccionadas.[78][79][80]
En xeral acéptase que a maioría das mutacións son neutras ou prexudiciais, mentres que as mutacións beneficiosas son raras; porén, a proporción de tipos de mutacións varía entre diversas especies. Isto indica dous puntos importntes: primeiro, a proporción de muracións efectivamente neutras é probable que varíe entre especies, o que ten como resultado a dependencia do tamaño efectivo da poboación; segundo, os efectos medios das mutacións prexudiciais varían drasticamente entre especies.[24] Ademais, a distribución de efectos na fitness difire entre rexións codificantes e rexións non codificantes, e as de ADN non codificante contén mutacións debilmente seleccionadas.[24]
En organismos multicelulares con células reprodutoras, as mutacións pode ser divididas en mutacións na liña xerminal, que poden transmitirse aos descendentes por medio do ADN das células reprodutoras, e mutacións somáticas (tamén chamadas mutacións adquiridas),[81] que afectan a células que non interveñen na reprodución e que normalmente non se transmiten á descendencia.
Unha mutación na liña xerminal dá lugar a unha mutación constitucional na descendencia, é dicir, unha mutación que está presente en todas as células. Unha mutación constitucional pode tamén producirse moi pouco despois da fecundación, ou continuar a partir dunha mutación constitucional nun proxenitor.[82]
A distinción entre mutacións na liña xerminal e mutacións somáticas é importante en animais que teñen unha liña xerminal específica para producir as células reprodutoras. Porén, non ten moito valor á hora de comprender os efectos das mutacións en plantas, que carecen dunha liña xerminal específica. A distinción é tamén borrosa en animais que se reproducen asexualmente por mecanismos como a xemación, porque as células que dan lugar ao organismo fillo tamén dan lugar á liña xerminal dese organismo.
Unha nova mutación de liña xerminal non herdada dos proxenitores denomínase mutación de novo.
Os organismos diploides (por exemplo, os humanos) conteñen dúas copias de cada xene, un alelo de orixe paterna e outro de orixe materna. Baseándose na aparición da mutación en cada cromosoma, podemos clasificar as mutacións en tres tipos.
Un organismo de tipo silvestre (ou tipo salvaxe) ou organismo non mutado homocigoto é o que non ten ningún dos dous alelos mutado.
Para categorizar unha mutación, debería de identificarse a secuencia "normal", que debe obterse a partir do ADN dun orgnismo "normal" ou con "saúde" (o que se opón a "mutante" ou "enfermo"); idealmente, debería estar a disposición pública para a comparación directa nucleótido a nucleótido, e ter o acordo da comunidade científica ou dun grupo de xenetistas expertos e biólogos, que teñen a responsabilidade de establecer o estándar ou a denominada secuencia "consenso". Este paso require un temendo esforzo científico. Unha vez que se coñece a secuencia consenso, as mutacións dun xenoma poden ser precisadas, descritas e clasificadas. O comité da Human Genome Variation Society (HGVS) desenvolveu a nomenclatura das variantes das secuencias humanas estándar,[90] que deberían utilizar os investigadores e os centros de diagnóstico para xerar descricións non ambiguas das mutacións. En principio, esta nomenclatura pode utilizarse támén para describir mutacións noutros organismos. A nomenclatura especifica o tipo de mutación e os cambios de bases ou aminoácidos. Exemplos de nomenclatura son:
As taxas de mutación varían substancialmente entre especies, e as forzas evolutivas que xeralmente determinan a mutación están sendo moi investigadas.
Os cambios no ADN causados polas mutacións nunha rexión codificante do ADN poden causar erros en secuencias de proteínas que poden ter como resultado a formación de proteínas parcial ou completamente non funcionais. Cada célula, para poder funcionar correctamente, depende de que miles de proteínas funcionen debidamente nos lugares e momentos axeitados. Cando unha mutación altera unha proteína que desempeña un papel fundamental no corpo, pode causar algún trastorno médico. Algunhas mutacións alteran a secuencia de bases do ADN dun xene pero non cambia a función da proteína producida polo xene. Un estudo sobre a comparación de xenes entre diferentes especies de Drosophila suxire que se unha mutación non cambia unha proteína, a mutación moi probablemente será daniña, cunha estimación dun 70 por cento de polimorfismos de aminoácidos que teñen efectos nocivos e os restantes ou son neutros ou feblemente beneficiosos.[8] Porén, os estudos demostran que só o 7% das mutacións puntuais no ADN non codificante de lévedos son prexudiciais e o 12% no ADN codificante son prexudiciais. O resto das mutacións son neutras ou lixeiramente beneficiosas.[91]
Se unha mutación está presente nunha célula xerminal, pode dar lugar a unha descendencia que porta a mutación en todas as súas células. Isto é o que ocorre nas doenzas hereditarias. En particular, se hai unha mutación nun xene de reparación do ADN nunha célula xerminal, as persoas que porten esas mutacións na liña xerminal poden ter un maior risco de padecer cancro. Un exemplo dunha destas mutacións é o albinismo, unha mutación que ocorre nos xenes OCA1 ou OCA2. Os individuos con este trastorno son máis propensos a moitos tipos de cancros e outros trastornos e teñen alteracións na visión.
Os danos no ADN poden causar un erro cando o ADN se replica, e este erro de replicación pode causar unha mutación xénica que, á súa vez, podería causar un trastorno xenético. Os danos no ADN son reparados polo sistema de reparación do ADN da célula. Cada célula ten diversas vías polas cales os encimas recoñecen e reparan danos no ADN. Como o ADN pode ser danado de moitas maneiras, o proceso de reparación do ADN é un modo importante polo cal o corpo se protexe das doenzas. Unha vez que os danos no ADN deron lugar a unha mutación, a mutación non pode ser reparada.
Por outra parte, unha mutación pode ocorrer nunha célula somática dun organismo. Tales mutacións estarán presentes en todos os descendentes desta célula dentro do mesmo organismo. A acumulación de certas mutacións ao longo de xeracións de células somáticas é en parte a causa da transformación maligna, desde unha célula normal a unha célla cancerosa.[92]
As células con mutacións de perda de función heterocigotas (unha copia boa do xene e unha copia mutada) poden funcionar normalmente coa copia non mutada ata que a copia boa é mutada somaticamente de forma espontánea. Este tipo de mutación ocorre a miúdo en organismos vivos, pero é difícil de medir a súa taxa. A medición desta taxa é importante para predicir a taxa á que as persoas poden desenvolver o cancro.[93]
As mutacións puntuais poden orixinarse a partir de mutacións espontáneas que ocorren durante a replicación do ADN. A taxa de mutación pode ser incrementada por mutáxenos. Os mutáxenos poden ser físicos, como a radiación dos raios UV, os raios X ou a calor extrema, ou compostos químicos (as moléculas que colocan mal as bases ou distorsionan a forma helicoidal do ADN). Os mutáxenos asociados con cancros son frecuentemente estudados para aprender sobre o cancro e a súa prevención.
Os prións son proteínas e non conteñen material xenético. Porén, a replicación dos prións está suxeita a mutacións e a selección natural igual que outras formas de replicación.[94] O xene humano PRNP codifica a importante proteína prión PrP, e pode sufrir mutacións que dan lugar a enfermidades causadas por prións.
Aínda que as mutcións que causan cambios en secuencias de proteínas poden ser daniñas para un organismo, en ocasións o efecto pode ser positivo nun ambiente dado. Neste caso, a mutación pode capacitar ao organismo mutante para resistir determinados estreses ambientais mellor que os organismos de tipo silvestre, ou reproducirse máis rapidamente. Neses casos unha mutación tenderá a ser máis común nunha poboación por efecto da selección natural. Exemplos son:
Resistencia ao VIH: unha deleción específica de 32 pares de bases no CCR5 humano (CCR5-Δ32) confire resistencia ao VIH aos homocigotos e atrasa o comezo da fase de SIDA en heterocigotos.[95] Unha posible explicación da etioloxía da relativamente alta frecuencia de CCR5-Δ32 na poboación europea é que proporcionou resistencia á peste bubónica no século XIV en Europa. As persoas con esta mutación tiñan máis probabilidades de sobrevivir á infección, polo que a súa frecuencia na poboación se incrementou.[96] Esta teoría podería explicar por que esta mutación non se encontra no sur de África, que non foi afectada pola peste bubónica. Unha nova teoría suxire que a presión selectiva sobre a mutación CCR5 Delta 32 foi causada pola varíola en vez de pola peste bubónica.[97]
Resistencia á malaria: un exemplo dunha mutación nociva é a da anemia falciforme, un trastorno do sangue no cal o corpo produce un tipo anormal da proteína transportadora de oxíxeno hemoglobina dos glóbulos vermellos. Un terzo dos habitantes indíxenas da África subsahariana portan o alelo, porque, en áreas onde a malaria é común, ten un valor de supervivencia portar un só alelo falciforme (carácter de célula falciforme).[98] Aqueles que teñen só un dos dou alelos da anemia falciforme son máis resistentes á malaria, xa que o axente infecciosa da malaria, o Plasmodium queda parado nas células falciformes que infecta.
Resistencia a antibióticos: practicamente todas as bacterias desenvolven resistencia a antibióticos cando se expoñen a antibióticos. De feito, as poboacións bacterianas xa teñen esas mutacións nunha baixa frecuencia, que despois son seleccionadas baixo a presión exercida polos antibióticos.[99] Obviamente, tales mutacións son só beneficiosas para a bacteria, pero non para o que é infectado por elas.
Persistencia da lactase: a persistencia da lactase é unha mutación permitiu aos humanos expresar o encima lactase despois de ser destetados, de modo que de adultos poden dixerir o azucre lactosa do leite, o que é probablemente unha das mutacións máis beneficiosas na evolución humana recente.[100]
O mutacionismo é unha das varias alternativas á evolución por selección natural que existiron antes e despois da publicación en 1859 do libro de Charles Darwin A orixe das especies. Nesta teoría, a mutación é a fonte de novidades xenéticas, creando novas formas e especies, en ocasións instantaneamente,[101] nun salto súbito.[102] As mutacións eran consideradas como impulsoras da evolución, que estaba limitada pola maior ou menor aparición das mutacións.
Antes de Darwin, os biólogos xeralmente crían no saltacionismo, a posibilidade de grandes saltos evolutivos, incluíndo a especiación inmediata. Por exemplo, en 1822 Étienne Geoffroy Saint-Hilaire argumentou que as especies podían formarse por transformacións repentinas, o que sería posteriormente chamado macromutación.[103] Darwin opúxose ao saltacionismo, insistindo no gradualismo na evolución igual que na en xeoloxía. En 1864, Albert von Kölliker fixo revivir a teoría de Geoffroy.[104] En 1901 o xenetista Hugo de Vries deulle o nome de "mutación" ás novas formas similares que se orixinaban subitamente nos seus experimentos sobre a planta Oenothera lamarckiana, e na primeira década do século XX, o mutacionismo, ou como o chamou de Vries mutationstheorie,[101][105] converteuse nun rival do darwinismo, que foi apoiado durante certo tempo por xenetistas como William Bateson,[106] Thomas Hunt Morgan e Reginald Punnett.[101][107]
A comprensión do mutacionismo enturbouse pola interpretación que fixeron dos primeiros mutacionistas os científicos que apoiaban a síntese moderna da evolución, dicindo que os mutacionistas se opoñían á evolución darwinista, así como os seus rivais da escola biométrica, que argumentaban que a selección operaba sobre a variación continua. Nesta interpretación, os mutacionistas foron derrotados por unha síntese da xenética e a selección natural que se supoñía empezara máis tarde, arredor de 1918, cos traballos do matemático Ronald Fisher.[108][109][110][111] Porén, o aliñamento da xenética mendeliana e a selección natural empezou xa antes, en 1902, cun artigo de Udny Yule,[112] e acumulouse cos traballos teóricos e experimentais realizados en Europa e América. Malia esta controversia, os primeiros mutacionistas xa aceptaran en 1918 a selección natural e explicaban a variación continua como resultado de que moitos xenes actuaban sobre as mesmas características, como a altura.[109][110]
O mutacionismo, xunto con outras alternativas ao darwinismo como o lamarckismo e a ortoxénese, foi descartado pola maioría dos biólogos, xa que consideraban que a xenética mendeliana e a selección natural podían facilmente funcionar xuntas; a mutación pasou a adoptar o papel de fonte da variabilidade xenética esencial sobre a que actuaba a selección natural. Porén, o mutacionismo non se esvaeu totalmente. En 1940, Richard Goldschmidt argumentou outra vez sobre a especiación nun só paso por unha macromutación, describindo os organismos que así se orixinaban como "monstros esperanzados", gañándose un rexeitamento xeral.[113][114] En 1987, Masatoshi Nei argumentou controvertidamente que a evolución estivo a miúdo limitada á mutación.[115] Biólogos modernos como Douglas J. Futuyma concluíron que esencialmente todas as afirmacións de que a evolución é impulsada por grandes mutacións poden ser explicadas pola evolución darwinista.[116]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.