From Wikipedia, the free encyclopedia
O termo inglés splicing utilízase internacionalmente para referirse ao que tamén se denomina empalme. Trátase do empalme de fragmentos cortados dunha molécula, que se volven a unir cataliticamente, xeralmente eliminando algúns deles. O termo úsase fundamentalmente para referirse aos procesos que teñen lugar durante a maduración do ARN, pero pode falarse de splicing nos seguintes tres casos:
O splicing de ARN ou empalme de ARN é un proceso post-transcricional de corte e empalme de ARN. Normalmente consiste en cortar o ARN, eliminar os intróns do transcrito primario e posteriormente unir os exóns; aínda que hai casos nos que se eliminan tamén exóns ou se conservan intróns (splicing alternativo). É un proceso habitual en todos os tipos de ARN de eucariotas, especialmente no ARNm, pero tamén se pode dar en ARNr e ARNt de procariotas e bacteriófagos.
Os intróns espliceosomais atópanse en xenes eucarióticos que codifican proteínas. Nun destes intróns atopamos tres sitios requiridos para o splicing, que son: o sitio doante de empalme 3', o sitio aceptor de empalme 5', e o sitio de ramificación (preto do 3' do intrón). O sitio de empalme do extremo 5' do intrón ten unha secuencia constante GU, situada dentro dunha rexión de consenso máis grande e menos conservada. O sitio de empalme 3' ou sitio aceptor remata coa secuencia invariante AG. Desde esta zona en dirección 5' hai unha rexión rica en pirimidinas (C e U). Seguindo en dirección 5' desde esta rexión está o punto de ramificación, que inclúe unha adenina, implicada na formación do lazo (lariat).[2][3] Mutacións puntuais no ADN ou erros durante a transcrición poden activar un "sitio de empalme oculto" ou críptico en parte do transcrito que xeralmente non é cortado. Isto orixina un ARNm maduro ao que lle falta unha sección dun exón. Deste modo, unha mutación puntual, que normalmente só afectaría a un só aminoácido, pode manifestarse como unha deleción no final da proteína.
Na natureza existen diversos métodos de splicing do ARN. O mecanismo de splicing depende da estrutura do fragmento de ARN que pasará por este proceso, tendo en conta os seus tipos de intróns e o tipo de catálise requirida. Distinguiremos as seguintes vías de splicing:
O espliceosoma ou complexo de empalme é un complexo encargado de realizar o splicing formado por cinco ribonucleoproteínas nucleares pequenas ou snRNP e varios factores proteicos. O compoñente de ARN das snRNP é o encargado de recoñecer o intrón. A maior parte das interaccións entre o ARN inmaturo e as snRNP supoñen emparellamentos de bases entre porcións de secuencias nucleotídicas complementarias. Por exemplo, o ARN nuclear pequeno U1 do espliceosoma contén unha secuencia complementaria da secuencia consenso atopada na unión exón-intrón en 5', o que lle permite unirse a esta rexión dos pre-ARNm. Do mesmo xeito hai emparellamentos de bases entre as diferentes snRNP.
Identificáronse dous tipos de espliceosomas, o maior e o menor, e cada un contén diferentes tipos de snRNP.
Está formado polas snRNP U1, U2, U4, U5 e U6, está activo no núcleo e require para a súa ensamblaxe doutras proteínas como a U2AF e SF1 [3][4]. Recoñece a secuencia consenso GU (guanina-uracilo) do extremo 5' do intrón así como a secuencia consenso AG do extremo 3'. O 99% dos intróns elimínanse a través deste mecanismo.
Os compoñentes do espliceosoma vanse ensamblando seguindo unha orde na que se van formando os seguintes complexos:
É similar ao maior e tamén nuclear, pero o seu uso é máis raro e está reservado para eliminar intróns con diferenzas nos sitios de corte e empalme con respecto ao normal. Tamén se diferencian nas secuencias consenso recoñecidas, que neste caso son AU e AC para os extremos 3’ e 5’, respectivamente. Ademais, agás a partícula snRNP U5, o resto son análogos funcionais denominadas U11 (análogo funcional da U1), U12 (da U2), U4atac (da U4) e U6atac (daU6)[5].
Consiste no empalme de exóns de dous transcritos primarios distintos, coa conseguinte formación dun ARN híbrido mediada polo espliceosoma. A diferenza deste, o splicing normal (ou cis-splicing) actúa sobre unha soa molécula de ARN en lugar de sobre transcritos distintos. O trans-splicing é pouco común [6].
É un corte e empalme no que o propio intrón actúa como catalizador da súa eliminación, polo que non se require a actuación de proteínas. Cando un fragmento de ARN ten actividade catalítica denomínase ribozima. Para que o mecanismo de auto-splicing sexa preciso requírese hidrólise de ATP. Existen dous tipos de intróns que actúan como ribozimas, os intróns do grupo I e os do grupo II. A semellanza no mecanismo de corte e empalme destes intróns e do espliceosoma suxiren que probablemente evolucionaron xuntos aínda que tamén se propuxo que o auto-splicing apareceu durante as primeiras fases da orixe da vida no chamado mundo de ARN.
É un mecanismo de corte e empalme pouco usual que se observa en ARNt. O mecanismo involucra diferentes rutas bioquímicas como a esplceosomal e o auto-splicing.
As mutacións poden afectar aos sitios de splicing, o que pode influír sobre a síntese proteica de distintas formas:
O splicing alternativo ou empalme alternativo permite obter a partir dun só transcrito primario de ARN distintas moléculas de ARN maduras. Este proceso ocorre principalmente en eucariotas aínda que tamén pode observarse en virus. Basicamente consiste en cambiar a composición de exóns dos ARN definitivos formados. Poden omitirse exóns, empalmalos de diferente maneira, ou reter algún intrón.
O splicing obsérvase en todos os dominios e reinos biolóxicos, pero a súa frecuencia e tipos varía moito duns grupos a outros. Os eucariotas utilízano para procesar moitos ARNm que codifican proteínas. Os procariotas raramente o utilizan e fano principalmente para procesar ARN non codificante. Outra importante diferenzas entre ambos os grupos é que os procariotas carecen por completo do mecanismo espliceosomal.
Como os intróns esplicoesomais non se conservan en todas as especies, hai un debate sobre o momento en que xurdiu o splicing espliceosomal. Propuxéronse dous modelos: o modelo dos intróns tardíos e o dos intróns temperáns (ver o apartado "Funcións biolóxicas e evolución" en "intrón").
Eucariotas | Procariotas | |
---|---|---|
Espliceosomal | + | - |
Auto-splicing | + | + |
ARNt | + | + |
Nalgúns casos as proteínas tamén poden sufrir splicing.[7] Os mecanismo biomoleculares son diferentes aos do splicing do ARN, pero tamén neste caso son eliminadas partes da molécula, que na proteína non se chaman intróns senón inteínas. As partes que quedan chámanse exteínas en vez de exóns, e únense formando a proteína definitiva. O splicing de proteínas observouse nunha ampla gama de organismos, como bacterias, arqueas, plantas, lévedos e tamén en humanos.[8]
Consiste na unión de fragmentos de ADN. Por exemplo, na técnica do splicing de ADN por ligazón dirixida (ou SDL, DNA splicing by directed ligation) utilízase a amplificación por PCR dun determinado conxunto de segmentos de ADN, endonucleases de restrición que crean extremos cohesivos nos produtos de amplificación e a ligazón final dos segmentos para dar a secuencia desexada.[1]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.