Loading AI tools
酸素発生を伴う光合成を行う細菌の一群、またはそれに属する生物 ウィキペディアから
藍藻(ラン藻、らんそう、英: blue-green algae)またはシアノバクテリア[注 4] (藍色細菌、らんしょくさいきん、英: cyanobacteria)は、酸素発生を伴う光合成(酸素発生型光合成)を行う細菌の一群である。
シアノバクテリア門 | ||||||
---|---|---|---|---|---|---|
1. (上) 糸状藍藻の1種、(下) クロオコックス属 | ||||||
分類 | ||||||
| ||||||
学名 | ||||||
Cyanobacteria Stanier ex Cavalier-Smith, 2002 | ||||||
和名 | ||||||
シアノバクテリア[2]、藍色細菌[2]、ラン細菌[2]、藍藻[3]、ラン藻[4]、藍色植物[3]、藍藻植物[3] | ||||||
英名 | ||||||
cyanobacteria[5], cyanoprokaryotes[6], blue-green algae[5], cyanophytes[5] | ||||||
下位分類[注 1] | ||||||
|
藍藻は系統的には細菌ドメイン(真正細菌)に属する原核生物であるが、歴史的には「植物」に分類されていた(植物#リンネ以降参照)。藻類に分類されていたことから、国際細菌命名規約ではなく国際藻類・菌類・植物命名規約に基づき命名されてきた。藍藻は現在でも藻類の一員として扱われることが多いが、原核生物である点で他の藻類や陸上植物(どちらも真核生物)とは系統的に大きく異なる。しかし、陸上植物のものも含めて全ての葉緑体は細胞内共生において取り込まれた藍藻に由来すると考えられており、藍藻は植物の起源を考える上で重要な存在である。
単細胞、群体、または糸状体であり(図1)、原核生物としては極めて複雑な体をもつものもいる(→#体制)。光合成色素としてふつう青いフィコシアニンを多くもつため、クロロフィルの緑色と合わせて青緑色(藍色)をしていることが多く、学名や英名の「cyano-」はギリシア語で「青色」を意味する κυανός (kyanós) に由来する(→#光合成)。藍藻のフィコシアニンは、青い天然色素として広く利用されている(アイスキャンディーなど)。藍藻は海から淡水、陸上に広く生育し、生産者や窒素固定者として生態系において重要な役割を担っている(→#生態)。またアオコや健康食品などの形で人間生活とも密接に関わっている(→#人間との関わり)。
藍藻は、地球上に初めて現れた酸素発生型光合成生物であったと考えられている(およそ25–30億年前)。藍藻の光合成によって、地球上に初めて酸素と有機物が安定的に供給されるようになり、現在へとつながる生態系の基礎が築かれた[9]。酸素発生型光合成というシステムは、細胞内共生(一次共生)を経て葉緑体の形で真核生物に受け継がれ、多様な真核藻類(および陸上植物)のもとともなった(→#進化)。細菌の中には、他にも光合成を行うグループが存在するが(光合成細菌と総称される)、酸素発生を伴う光合成を行うのは藍藻のみであり、他の光合成細菌は非酸素発生型[10][注 5]の光合成 (anoxygenic photosynthesis) を行う。
分類学的には、シアノバクテリア門(藍色細菌門、学名: Cyanobacteria)に分類される。2019年現在、メタゲノム研究(水などのサンプルから直接抽出したDNAに基づくゲノム研究であり、培養できない生物の性質を推定できる)から、藍藻に近縁であるが光合成能をもたない細菌群がいくつか見つかっている(メライナバクテリアなど)。これらの細菌群も光合成を行う藍藻とともにシアノバクテリア門に分類されることがあるが、以下では主に光合成を行う藍藻についてのみ概説する。
藍藻の中には、単細胞性、群体性、糸状性の種がいる[3][5][12][13][14][15](下図2)。藍藻の多くは肉眼では判別できない微細藻であるが、群体性や糸状性の藍藻の中には、肉眼で見えるほどの大きさになるものもいる(下図6a)。
細胞が密接して列状に連なっているもの (上図5)。伝統的に、糸状性の藍藻において細胞列をトリコーム(細胞糸 trichome)、1本から複数のトリコームが共通の外被に包まれたものを糸状体 (filament) とよぶ[15]。また多数のトリコームが共通の粘液質で包まれた巨視的な群体を形成するものもいる(例: ネンジュモ属、図6)。細胞が単列 (uniseriate) に並んでいるものが多いが、多列 (multiseriate) に並んでいるものもいる(例: スチゴネマ属 Stigonema)(上図5g)。トリコームの末端の細胞はふつう他の細胞とはやや異なる形をしており (上図1g)、特に先端が肥厚している場合はカリプトラ(頂冠 calyptra)とよばれる。一部の種では、トリコームが異極性を示す(上図5d)。例えばヒゲモ属 (Rivularia) などでは、トリコームの基部に異質細胞が存在し、トリコーム先端の細胞が細長く伸びている。この場合、基部の異質細胞で窒素固定、頂端部でリン吸収を行う[16] (つまり細胞間で形態分化とともに機能分化を示す)。トリコームは無分枝 (unbranching) であるものが多いが(上図5a, c, d)、一部は偽分枝または真分枝をする[15]。偽分枝 (false branching) とは、トリコームの途中が分断し (ふつう細胞死による)、その一端または両端が細胞列から外れて伸長することによって形成された分枝様の構造のことである(上図5e, 図7右)。一方、真分枝 (true branching) とは、トリコームを構成する細胞が2方向以上で分裂することによって形成された分枝である(上図5b, f, g, 図7左)。分枝する種の中には、匍匐糸と直立糸の分化などの異糸性 (heterotrichous) を示すものもいる(例: Fischerella)。糸状性の藍藻は、しばしば(全てではない)細胞分化(先端の細胞、異糸性、異質細胞やアキネートなど)や細胞死を伴う形態形成(偽分枝、連鎖体形成など)、細胞間の連絡(ペリプラズムの共有やセプトソーム)を示し、原核生物ではあるものの真の多細胞体ともいえる体をもつ場合がある[17][18]。
藍藻の細胞は直径1マイクロメートル (µm) 以下のこともあるが、原核生物としては大型のものが多く、直径 100 µm に達するものもいる[14]。
典型的なグラム陰性細菌 (大腸菌など) と同様、藍藻の細胞壁は、ペプチドグリカン層 (peptideglycan layer) と、その外側を覆う外膜 (outer membrane) からなる[19]。ペプチドグリカン層は、アミノ糖であるNーアセチルグルコサミンとNーアセチルムラミン酸が交互に連なった糖鎖が、オリゴペプチドで架橋された物質であるペプチドグリカン(ムレイン murein)からなる。藍藻のペプチドグリカン層は、一般的なグラム陰性細菌のそれにくらべて厚いことが多く(12–700ナノメートル (nm))、またオリゴペプチドの架橋が多い(グラム陽性細菌的な特徴)。ペプチドグリカン層が存在する細胞膜と外膜の間の空間は、ペリプラズム (periplasm) とよばれる。外膜は、細胞膜と同じく脂質二重層であるが、外側の層には糖鎖が結合した脂質(リポ多糖 lipopolysaccharide, LPS)が含まれる。他のグラム陰性細菌ではリポ多糖は毒となることがあり(内毒素)、藍藻がもつ外膜のリポ多糖にもその可能性が指摘されている[20]。
糸状性藍藻のトリコームでは、細胞列は共通の外膜に包まれており、またペプチドグリカン層を共有している[17]。細胞間には、ペプチドグリカン層を貫通して隣接する細胞の細胞膜同士をつなぐ連結構造であるセプトソーム(septosome、隔壁結合 septal junction、微細原形質連絡 microplasmodesmata)が多数存在する[17][21][22]。セプトソームは長さ 25 nm、外径 15 nm、内径 6 nmほどであり、おそらく細胞間での低分子物質輸送に関与している[23]。
外膜の外側には、結晶性の糖タンパク質からなる層が存在することがあり、S層 (surface layer, S-layer) とよばれる[24][25][26]。このような糖タンパク質層は、細胞の保護、物質透過、接着、認識、運動、被食防御などに関与していると考えられている。
さらに細胞は、タンパク質や細胞外多糖 (exopolysaccharide) からなる細胞外高分子物質 (extracellular polymeric substance, EPS) によって覆われることがある[19][27][28]。細胞外高分子物質は、その厚さや形態、性状に応じて、鞘(sheath; 薄く緻密で光学顕微鏡下で明瞭な構造; 上図8b, c)、夾膜 (capsule; 厚く均質で輪郭が明瞭な構造)、粘液質(slime; 細胞に沿った形を示さない不定形の構造; 上図8a)ともよばれる[29][30]。多数の個体が細胞外高分子物質からなる共通の基質に包まれ、群体やバイオフィルムを形成することもある。このような外被には、無機栄養分の貯蔵、乾燥耐性、紫外線耐性、浮力増大、被食防御などの機能があると考えられている[28][31][32][33]。細胞外高分子物質に含まれる紫外線吸収色素として、スキトネミン (scytonemin)[34]やグロエオカプシン (gloeocapsin)[35]、マイコスポリン様アミノ酸 (mycosporine-like amino acid, MAA)[36]などが知られている。また細胞外被が石灰化(炭酸カルシウムが沈着)することがあり、おそらく光合成における二酸化炭素濃縮機構と関連している[37]。このような石灰化によって、ストロマトライトが形成されることがある[38]。
藍藻は原核生物であり、DNAは核膜に包まれず、また葉緑体やミトコンドリア、ゴルジ体などの細胞小器官をもたない。細胞内で生体膜に包まれた構造としては、光合成における光化学反応の場であるチラコイドのみが存在する。チラコイドは扁平な袋であり、ふつう重なることなく、細胞内で同心円状(下図9)、放射状または不規則に配置する[39][40]。ふつうチラコイドには、フィコビリンタンパク質からなるフィコビリソームが付着している(下図9a, 11a)。一部の藍藻(原核緑藻)はフィコビリソームを欠き、チラコイドが重なってラメラを形成している(下図9b)。藍藻では、酸素呼吸における呼吸鎖の酵素もチラコイド上に存在することがある(一部の酵素を光化学系と共有する)[41]。最も初期に分かれた藍藻であるグロエオバクター属 (Gloeobacter) はチラコイドをもたず、光化学系は(呼吸鎖とともにパッチ状に)細胞膜上に存在する[42]。プロクロロン属 (Prochloron) では、チラコイドの一部が膨潤して液胞状になることがある[43]。チラコイドは、細胞膜と直接つながることはないと考えられていたが、現在では”チラコイド形成中心” (thylakoid center) が細胞膜上に存在することが示されている[44][45][46]。光学顕微鏡下では、チラコイドが存在する細胞周縁部が色付き、チラコイドを欠く中心域が淡色に見えることがあり、伝統的に前者を有色質 (chromoplasm)、後者を中心質 (centroplasm) とよぶ[47]。中心質にはふつうDNAが存在するため(下図9a)、この領域は核質 (nucleoplasm) ともよばれる(ただし藍藻の中には、DNAが細胞周縁部に存在する例もある[43])。
細胞内にはカルボキシソーム (carboxysome, polyhedral body) とよばれる直径200–700 nm ほどのタンパク質顆粒が存在する[48][49](上図9b, c)。カルボキシソームは主にルビスコや炭酸脱水酵素からなり、殻タンパク質で包まれている。カルボキシソームは、おそらく効率的な二酸化炭素濃縮機構に関わっており(重炭酸イオンから二酸化炭素を生成)、このため藍藻はほとんど光呼吸を示さない[48][50]。ただし、おそらく特異なグリコール酸代謝経路をもつ[51]。カルボキシソームは、炭素固定を行う他の細菌(光合成細菌や化学合成細菌)に見られることもある[52]。
ふつう貯蔵多糖としてグリコーゲンが存在するが、α-1,6結合の分枝が少ないセミアミロペクチンやアミロースをもつものもいる[53][54]。このような藍藻が貯蔵するα-グルカンは、藍藻デンプン (cyanophycean starch) ともよばれる。多くの藍藻は、アルギニンとアスパラギン酸からなる非リボソームペプチドであるシアノフィシン(下図10a)の顆粒(藍藻顆粒 cyanophycin granule)をもち、おそらく窒素貯蔵体としている[55](下図10b)。ただし光合成に機能するフィコビリソームを窒素貯蔵体としていることもある[56](窒素欠乏下ではフィコビリソームが分解され、これに由来する窒素を利用する)。細胞内には、油滴やポリリン酸体(polyphosphate body; リン貯蔵体として機能; 上図9c, 下図10c)などもふつうみられる[57]。またβ-ヒドロキシブチレート重合体(バイオプラスチックの一種)[57] や炭酸カルシウム[58](下図10c)を細胞内に貯めるものも知られている。
プランクトン性藍藻の中には、ガス胞 (gas vesicle) をもつものがいる[14][59][60]。ガス胞は細長い小胞であり、多数のガス胞が平行に密集して"エアロトープ" (aerotope, gas vacuole) を形成している。ガス胞の膜は脂質ではなく、タンパク質からなる。この膜は水を透過しないため、ガス胞は空気で満たされ比重が軽くなり、細胞は浮くことができる。つまりガス胞は細胞中の気泡のようなものであり、水と屈折率が異なるため光学顕微鏡下では目立つ(上図10b, 下図12)。光合成産物の増加やイオン取り込みによって細胞内の膨圧が高くなるとガス胞はつぶれて細胞は沈降し、そこで光合成産物の消費やイオン排出によって膨圧が低下すると再びガス胞が膨らんで細胞は浮上する[61]。ガス胞は藍藻に特有の構造ではなく、他のプランクトン性原核生物に見られることもある[62]。
藍藻は、酸素発生型光合成を行う唯一の原核生物群である。藍藻は2種類の光化学系(光化学系IとII)をもつ点で、光合成を行う他の細菌(非酸素発生型光合成を行う)とは異なる[63]。緑色硫黄細菌(クロロビウム門)やヘリオバクテリア(フィルミクテス門)は光化学系Iと相同な鉄硫黄型反応中心のみを、紅色細菌(プロテオバクテリア門)や緑色非硫黄細菌(クロロフレクサス門)は光化学系IIと相同なキノン型反応中心のみをもつ。直列した2種類の光化学系をもつことが、酸素発生型光合成(水を分解する)を可能にしていると考えられている。
知られている限り、全ての藍藻は好気環境下で酸素発生型光合成を行う。ただし、嫌気環境下で非酸素発生型光合成(光化学系Iを使用し、硫化水素を電子供与体として硫黄を生成)を行う例が知られている[64][65]。また連続暗黒下でも、有機物を利用した従属栄養を行って生育可能な種(通性光独立栄養性)もいる[66]。Synechocystis sp. PCC 6803 など従属栄養能をもつ藍藻は、光合成遺伝子の変異が致死的にならないため(光合成しなくても生きていける)、光合成研究のモデル生物として広く用いられている。またメタゲノム研究(海水などの環境から直接抽出したDNAをもとにしたゲノム解析)から、光合成能を含め代謝的に不完全(光化学系II、ルビスコ、クエン酸回路などの欠失)な藍藻 (UCYN-A, unicellular cyanobacteria group A) の存在が示されているが、これは他生物に共生して栄養的に依存して生きているものと考えられている[67][68]。古くは「無色の藍藻」が報告されているが[69]、少なくともその一部は全く別の細菌群に属することが明らかとなっている(例: ベッギアトア属)。
ほとんどの藍藻は、クロロフィル a をもつ。一部の藍藻は、クロロフィル a に加えて、クロロフィル b、d、または f をもつ[70][71][72]。クロロフィル d や f は生物の中で一部の藍藻のみがもつ色素であり、人間の目には見えない近赤外光を光合成に利用できる。クロロフィル b(または類似色素)をもつ藍藻は、原核緑藻ともよばれる。原核緑藻のプロクロロコックス属 (Prochlorococcus) はクロロフィル a の代わりにジビニルクロロフィル a をもつ点で特異な存在であり、光合成の反応中心でジビニルクロロフィル a を用いる唯一の生物である[73][74]。またアカリオクロリス属 (Acaryochloris) はクロロフィル a 量が少なく、反応中心でクロロフィル d を用いている[75]。
ほとんどの藍藻は、光合成アンテナ色素タンパク質であるフィコビリンタンパク質をもつ。藍藻において、フィコビリンタンパク質はフィコビリソームを形成し、チラコイドに付着している[76][77]。フィコビリソームの中央にはアロフィコシアニンからなるコアが位置し、そこからフィコシアニンとフィコエリスリン(後者を欠くこともある)からなるロッドが伸びている(図11a)。ふつう青色のフィコシアニンの割合が多いため、「藍藻」の名が示すように青緑色を呈する。しかし中には赤色のフィコエリスリンを多くもつため、紫色から赤色を呈する種もいる(図2, 11b)。またフィコエリスリンの代わりにフィコエリスロシアニンをもつものもいる[78]。原核緑藻とよばれる藍藻はフィコビリンをほとんどもたないため、クロロフィルの色である緑色がそのまま見える(図11b)。
藍藻がもつカロテノイドとしては、β-カロテン、ゼアキサンチン、エキネノン、ミクソキサントフィル(ミクソール配糖体)が一般的だが、α-カロテン、カンタキサンチン、ノストキサンチン、オシラキサンチン(オシロール配糖体)などをもつものも報告されている[83]。
藍藻の炭素固定はカルビン回路によって行われる。藍藻のもつルビスコ(リブロース1,5-ビスリン酸カルボキシラーゼ/オキシゲナーゼ)には2タイプが知られる。多くの藍藻は、緑色植物などがもつものと相同な Form IB ルビスコをもつ。このような藍藻は β-シアノバクテリア、Form IB ルビスコからなるカルボキシソームは β-カルボキシソーム とよばれる[48]。一方、一部の藍藻(プロクロロコックス属など)は、一部のプロテオバクテリアのものと相同な Form IA ルビスコをもつ(おそらく遺伝子水平伝播による)。このような藍藻は α-シアノバクテリア、Form IA ルビスコからなるカルボキシソームは α-カルボキシソーム とよばれる[48]。
藍藻において、酸素呼吸の電子伝達系(呼吸鎖)は細胞膜やチラコイドに存在し、後者の場合は、光合成の光化学系とタンパク質を一部共有している(プラストキノン)[84]。また酸素呼吸におけるクエン酸回路(TCA回路)のオキソグルタル酸デヒドロゲナーゼを欠いており、この部分を別の酵素によって代謝している[85]。
窒素は、タンパク質や核酸の原料として全ての生物にとって必須な元素である。窒素は窒素分子の形 (N2) で空気中に大量に存在するが、全ての真核生物を含む多くの生物は、窒素分子を直接利用することはできない。しかし原核生物の中には、窒素分子をアンモニアに変換できるものがおり、この反応は窒素固定 (nitrogen fixation) とよばれる。藍藻の中にも窒素固定が可能なものがおり、生態系において重要な役割を担っている(他の生物が利用可能な窒素栄養分の供給)[86][87][88]。窒素を固定する酵素であるニトロゲナーゼは酸素に弱いため、酸素発生型光合成と窒素固定を1つの細胞で同時に行うことはできない。それに対応して、藍藻は以下のように光合成と窒素固定を分けて行っている。
一部の藍藻では、光が当たる日中に光合成を行い、光がない夜間に窒素固定を行う[89][90]。糸状性のアイアカシオ属 (Trichodesmium) では、窒素固定を行う細胞 (diazocyte) とふつうの栄養細胞が分化しており、光合成と窒素固定を同時に異なる細胞で行うことが可能になっている[91][92]。この例では細胞の形態的分化は顕著ではないが、ネンジュモ目の藍藻は、異質細胞(heterocyte, ヘテロシスト heterocyst[注 7])とよばれる形態的にも極めて特殊化した窒素固定用の細胞を形成する[17][94][95](上図10b, 図12)。異質細胞は光化学系の一部を欠くため細胞内に酸素が発生せず、また酸素を通さない厚い細胞壁で囲まれている。隣接する栄養細胞と接する部分では、異質細胞の細胞質は極めて細くなっており、またその部分にはときに光学顕微鏡で確認できる程の大きなシアノフィシン顆粒(極節 polar nodule)が存在する(上図10b, 図12)。異質細胞で固定された窒素はグルタミンの形で隣接細胞へ輸送され、隣接細胞からはその材料であるグルタミン酸やエネルギー源である糖(窒素固定は大量のATPを消費する)が供給される。異質細胞は通常の栄養細胞から分化するが、種によってその位置や間隔はほぼ一定であり、重要な分類形質となっている。異質細胞が分泌するペプチドによって周囲の細胞が異質細胞になることが抑制され、これによって異質細胞の間隔が一定になる例が知られている。
他の原核生物と同様、藍藻は環状DNAからなるゲノムをもち、また本来のゲノムDNAに加えて、小さな環状DNA(プラスミド)をもつこともある。ただし一般的な原核生物とは異なり、多くの場合ゲノム(環状DNA分子)が複数コピー存在する[96]。多くの藍藻でゲノム塩基配列が報告されており、特に Synechocystis sp. PCC 6803 は生物として4番目、酸素発生型光合成生物として初めてゲノムが解読された[97]。知られているものの中では、ゲノムサイズは 1.7 - 9 Mbp(Mbp = 100万塩基対)ほどであり(さらにおそらく 15 Mbp に達するものもいる[98])、1,700–7,000個ほどの遺伝子をもつ。この中には、一部の真核生物のゲノムより大きく多数の遺伝子をもつものもいる。
藍藻は、真核藻類にくらべて形質転換など分子生物学的解析が比較的容易なものが多く、光合成研究などのモデル生物として広く用いられている[99]。よく用いられる藍藻として、Synechocystis sp. PCC 6803(図13)、Thermosynechococcus elongatus、Synechococcus elongatus PCC 6301、Cyanothece sp. ATCC 51142、Anabaena sp. PCC7120、Nostoc punctiforme などがある(PCC, ATCC は微生物株保存機関の略号)。
藍藻は鞭毛(細菌型)をもたないが、細胞外被(S層)の糖タンパク質による遊泳運動や、線毛による匍匐運動を行うものが知られている[31][100][101]。また藍藻において最もよく知られた運動は、多くの糸状性藍藻が示す滑走運動 (gliding movement) である。直線的な運動だけではなく、トリコームが揺れたりする運動もよく見られ(図14)、ユレモ属 (Oscillatoria) の和名、学名ともこの姿に由来する(oscillatio = 振動)。この運動は粘液多糖の噴射または糖タンパク質性外被(S層)が関係していると考えられている[19]。
また藍藻からは、シアノバクテリオクロム (cyanobacteriochrome) やフラビン結合タンパク質、細菌型ロドプシンなどさまざまな光受容体が見つかっている[79][102][103]。このような光受容体は、走光性や光屈性、補色馴化、細胞分化など光によって制御される現象に関わっている。
藍藻は基本的に二分裂によって増殖(図15a)、または群体や糸状体の成長を行い、群体や糸状体はその分断化によって増殖する。一部の種は、外生胞子(exospore, エクソサイト exocyte; 図16a)や内生胞子(endospore, ベオサイト baeocyte; 図16b)を形成して無性生殖を行う[14][15]。
糸状性の藍藻では、ときに単純な分断化、または細胞死による隔盤 (separation disc, necridium) 形成によって糸状体の一部が切り離され、連鎖体(ホルモゴニア; hormogonium, pl. hormogonia)とよばれる短い細胞糸が形成される[104]。連鎖体は走光性、滑走運動能、またはガス胞などをもち、散布体として機能する[105]。
ネンジュモ目の種は、特殊化した休眠細胞であるアキネート (akinete) を形成することがある[106](図16c)。アキネートには異質細胞と共通する特徴(細胞壁成分、光化学系IIの非発現、スーパーオキシドジスムターゼの低活性など)があり、その分化には共通のシステムがあると考えられている[107]。
藍藻は原核生物であり、有性生殖は行わない。ただし、外界のDNAを取り込むことや(形質転換)、ウイルス(藍藻のウイルスは特にシアノファージ cyanophage とよばれる)(図15b)によるDNA注入(形質導入)によって、遺伝子水平伝播が頻繁に起こっていることが示唆されている[108]。
藍藻は海、淡水、さらに陸上環境にも広く生育しており、藍藻がいない環境を探すのは難しい[14][109][110]。量的にも多く、その生物量は10億トンに達するとの試算もある[111]。一般的に、真核藻類にくらべて温度、pHが高い環境を好む傾向があるが[112]、低温[113]や酸性環境[114]に生育する藍藻も少なくない。また真核藻類にくらべて、低照度で生育可能なものが多い[115]。
貧栄養の海域(つまり沿岸域や高緯度地域を除く多くの海域)では、ピコプランクトン性(直径 2 µm 以下)の藍藻(シネココックス属 Synechococcus やプロクロロコックス属 Prochlorococcus)[注 8] が主要な生産者となっていることが多い[117][118][119](下図17a, b)。このような環境では、表層から真光層下部(水深 200 m 付近)まで、それぞれの光条件に適応したピコプランクトン性藍藻がすみ分けている[108]。このようなピコプランクトン性藍藻は地球上で最も個体数が多い生物であると考えられており、シネココックス属で年平均 7.0 × 1026 細胞、プロクロロコックス属で年平均 2.9 × 1027 細胞と試算され、その純一次生産量は 12 Gt 炭素/年、海洋の全純一次生産量の25.2%に達すると推定されている[120]。熱帯海域(特に紅海や南太平洋)では、糸状性藍藻のアイアカシオ属 (Trichodesmium) がときに多く、赤潮を形成することがある[92](下図17c, d)。
海でも淡水でも底生性の藍藻は多く、しばしばバイオフィルムを形成して基質表面を覆っている[128](下図19a–c)。沿岸岩礁域の潮間帯から潮上帯でも、付着性の藍藻がペンキのようにべったりと岩を覆っていることがある。またオーストラリアのシャーク湾など塩分濃度が高い浅瀬では、植食動物がいないため底生性藍藻の群落が発達し、層状構造をもつドーム状構造であるストロマトライト (stromatolite) を形成する[38](下図19d)。ストロマトライトに似るが、層状構造を欠くものはスロンボライト (thrombolite)、貝殻などを核に球状に形成されたものをオンコライト (oncolite) という[129][130]。
藍藻は土壌や岩石表面など陸域にも多く、極地から熱帯まで広く分布している(下図20a, b)。変水性(体内の水分量が大きく変動しても、つまり乾燥しても仮死状態で生存し、再び水が得られると急速に復活する性質)による高い乾燥耐性を示すものもおり、100年近く乾燥状態に置かれたものが復活したとの報告もある[131]。土壌表層では藍藻が土壌クラスト (soil crust) を形成し(下図20b)、土壌の安定化や窒素栄養分の供給を行うため、特に砂漠や荒野での植生遷移の初期段階において重要な働きを果たすことがある[109][110]。藍藻の中には、岩石内生(岩の中に生育)のものもおり、砂漠や極地からも見つかっている[132]。
温泉(特にアルカリ性から中性)に生育する好熱性の藍藻も知られており(温泉藻)[109][110]、このような場所では温度に応じて複数種の藍藻が帯状分布を示すこともある(上図20c)。中には 70℃ 以上の高温に耐えるものや至適増殖温度が 60℃ 近いものもいる。一方、雪や氷上、北極や南極のような低温環境下に多く見られる藍藻もいる[113][128][133](上図20d)。氷河上で粒子状に成長した藍藻はクリオコナイト (cryoconite) とよばれ、黒っぽい色のため熱を吸収し氷河上に穴(クリオコナイトホール)を形成する。また塩湖のような塩分濃度が高い環境に生育するものもおり、浸透圧調節物質(グルコシルグリセロール、グリシン、トリメチルグリシンなど)の蓄積などによって高浸透圧に対応している[134]。
藍藻の中には、他の生物と共生しているものも少なくない[135][136][137][138][139][140]。このような共生者である藍藻は、シアノビオント (cyanobiont) とよばれることがある。
地衣類の多くは緑藻を共生者としているが、地衣の 8% 程の種は藍藻を共生者としており、特にこのような地衣は藍藻地衣 (cyanolichen) ともよばれる[137][141](下図21a)。藍藻地衣では藍藻が細胞外共生しているが、ゲオシフォン(Geosiphon; 菌根菌として重要なグループであるグロムス亜門に属する)では、藍藻 (Nostoc punctiforme) が細胞内共生している[137][142][143][144](下図21b)。これらの例では、藍藻が光合成産物(有機物)を宿主に供給し、宿主からは好適な生育環境を得ていると考えられている。同じような関係にあるものとして、海綿[145]や等脚類[146]、ホヤ[147](下図21c)、放散虫[148][149]、有孔虫[150]、繊毛虫[148][149]、渦鞭毛藻[148][149][151][152](下図21d)などに藍藻が細胞外または細胞内共生している例が知られる。このような藍藻の中には、ホヤに共生するプロクロロン属 (Prochloron) のように宿主体外では生育できない絶対共生性のものもいる。
細胞内共生した藍藻が細胞小器官となった例もある。葉緑体(色素体)は、太古に細胞内共生した藍藻に起源をもつが、現在ではこの藍藻は自立能を失い、完全に宿主に制御された細胞小器官となっている[9][153]。有殻糸状仮足アメーバであるビンカムリ類(Paulinella spp.; ケルコゾア門) は、葉緑体とは起源が異なる(より新しい)藍藻との細胞内共生に由来する構造(クロマトフォア chromatophore とよばれる)をもつ。この構造も既に宿主と不可分の存在であり、細胞小器官化したものであることが明らかとなっている[154]。
水界でも、珪藻[163][138][164][165][166][167]やハプト藻[168][169]など光合成を行う藻類に藍藻が共生している例が知られている(上図22e)。ハフケイソウ科の珪藻に細胞内共生している藍藻は、既に自立能・光合成能を失い、楕円体 (spheroid body) とよばれる細胞小器官になっている[170]。Braarudosphaera(ハプト藻)に共生する藍藻 (UCYN-A) も光合成能を含むいくつかの機能を欠いており、おそらく宿主に大きく依存している[67]。
地衣類やサンゴにおいては、主となる共生者(それぞれ緑藻、渦鞭毛藻)とともに、窒素固定を行う藍藻が共生している例が知られている[171][172](図23)。これらの例では、光合成 (有機物供給) と窒素固定(窒素栄養分供給)を共生者の間で分業していると考えられている。
上記の例にくらべて、共生関係が明瞭ではない、より「ゆるい」共生関係も知られている。そのような例として、藍藻群集中に子嚢菌が生育しているもの[141]や、藍藻と珪藻が密集しているもの[173]、海藻[174][175]、シャジクモ類[176]、蘚類[177][178]、マングローブ植物[179]、海草[180][181]、ウキクサ[135]、イネ[135]、ラン(吸水根)[182]の表面に藍藻が着生している例などが報告されている。
富栄養湖沼において(特に夏期)、藍藻はときに大増殖してアオコ(青粉)とよばれる現象を引き起こす(下図24a; 上記参照)。アオコは様々な形で人間生活に害を与えることがある[123][183]。アオコは水面に形成されるため湖沼を遮光し、水草や他の植物プランクトンの生育を妨げる。また大量に発生したアオコの夜間における呼吸、およびアオコが死んだ際の分解によって酸素が消費され、湖沼が酸欠状態になり、水生生物が死ぬことがある。一部のアオコは2-メチルイソボルネオール(下図24b)やゲオスミンなどのカビ臭物質を産生し、問題となることがある。さらにアオコを形成する藍藻の中には、下記のような藍藻毒を産生するものもいる。
藍藻の中には毒(藍藻毒、シアノトキシン cyanotoxin)を生成するものがおり、家畜やヒトに被害が生じることもある[184][185][186][187][188]。非リボソームペプチド(リボソームにおける翻訳を介さないペプチド)であるミクロシスチン(上図24c)やノジュラリン(上図24d)はタンパク質ホスファターゼを阻害し、肝臓毒となる。またアルカロイドであるアナトキシン(上図24e)やサキシトキシンはシナプスでの伝達を阻害する神経毒となる。食用に用いられる種のスピルリナからビタミンB12の同族体が同定されたがビタミンB12の補給源にはならない[189]、また不適切な製造工程で生産された食品での健康被害の報告が有る[190]。
アクアリウムにおいては、水槽のガラス壁面や水草、流木などにさまざまな種の藍藻(「
アフリカや中南米の湖沼で大発生する "スピルリナ"(古くは Spirulina に分類されていたためこの名でよばれるが、現在では Arthrospira に移されている)は現地では古くから食料として利用が試みられていたが、現在では世界各地で大規模に培養され、健康食品などとして流通している[193][194](下図25a)。最大の用途は量的に粗製青色色素であり、主に冷菓の着色に利用されている[193][195](下図25d)。さらにカロテノイドを含むため、錦鯉の色揚剤や熱帯魚用飼料に配合されている[193]。
他にも、食用としての藍藻の利用が世界各地で散見される。髪菜(Nostoc flagelliforme, ネンジュモ目)は中華料理の高級食材であり、内陸アジアのステップ地帯の地表に生育する[196](上図25e)。上記のように、このような藍藻は土壌の安定化や植生発達に重要であり、髪菜の乱獲は表土流出など環境破壊を引き起こした。そのため、中国では2000年に髪菜の採取・販売が禁止されている。髪菜に近縁の葛仙米 (Nostoc sphaeroides) やイシクラゲ (Nostoc commune) も、日本、中国、南米などで食用とされることがある[197]。河川に生育するアシツキ (Nostoc verrucosum) は日本で古くから食用とされ、万葉集にアシツキを採取する女性を詠んだ大伴家持の歌がある。スイゼンジノリ (Aphanothece sacrum, クロオコックス目) は九州の湧水からのみ知られる藍藻であり懐石料理の高級食材などに利用され、養殖も行われている[198]。
藍藻は窒素固定能をもつため、有機肥料として用いられることがある。アカウキクサ類(薄嚢シダ類)は葉の内部に窒素固定能をもつ藍藻 (Anabaena azollae) を共生させており (上記参照)、水田の緑肥に利用されることがある[199]。
藍藻が生成するさまざまな生理活性物質[200][201][202]や、藍藻の細胞外被がもつ保水性、紫外線防御に関わる物質[29][203]に関して、利用に向けた研究が行われている。
藍藻を利用した再生可能エネルギーの研究も盛んに行われている[204][205]。例えば光合成によってエタノールを産生できる遺伝子改変藍藻、つまり光合成によって二酸化炭素を直接エタノールに変換する藍藻が作出されている[206]。また窒素固定の際に、副産物として水素が生成されるため、これを利用した水素生産が試みられている[204]。さらに、藍藻による光合成を直接電気に変換する研究も行われている[207][208]。
ゲノムレベルでの系統解析からは、藍藻は細菌の中でクロロフレクサス門やデイノコックス・テルムス門、放線菌門、フィルミクテス門などに比較的近縁であることが示唆されており、これらを合わせてテッラバクテリア (Terrabacteria;上門レベルに相当) にまとめることが提唱されている[210][211]。藍藻は、生物の進化において初めて(そして唯1回)酸素発生型光合成能を獲得した生物群であると考えられている。メタゲノム研究により、動物の腸管や土壌、汚水、地下水など様々な環境から、藍藻に近縁な非光合成細菌の系統群がいくつか見つかっている(メライナバクテリアなど)[212][213][214]。これらの細菌が光合成能の痕跡を全くもたないことから、藍藻の祖先は嫌気性の非光合成生物であり、遺伝子の水平伝播などによって酸素発生型光合成能を獲得したと一般には考えられている[213][215]。ただし、水平伝播のもとになった生物についてはよくわかっていない。
藍藻以外の光合成細菌は、藍藻がもつ光化学系Iもしくは光化学系IIのどちらか一方にのみ相同な光合成システムをもつ[216]。これらのシステムでは水の光分解は起こらず、非酸素発生型の光合成が行われる。2つの光化学系が連結した酸素発生型の光合成を行う細菌は藍藻以外知られていない。そのため、藍藻以外の光合成細菌から、それぞれの光化学系が別個に藍藻の祖先に水平伝播したとみなされる場合が多い。しかし、各光化学系の起源と進化についてはほとんどわかっておらず、藍藻以外の光合成細菌が藍藻より以前に存在したことを示す直接的な証拠はない。そのため、藍藻のもつ2つの光化学系が別個に他の細菌に水平伝播して非酸素発生型の光合成が後から誕生した可能性も、現在のところ否定する証拠はない。実際に、緑色硫黄細菌や緑色非硫黄細菌など一部の光合成細菌については、その起源が藍藻よりもはるかに遅いことを示唆するデータが提出されており[217][218]、藍藻も含めてどの光合成細菌が最も古くに誕生したのかは現在も合意に至っていない[219]。
藍藻の進化は化石やバイオマーカー(化学化石、biomarker)、分子時計計算など様々な角度から研究が行われている。しかし、いずれも多くの異論があり、広く合意のとれた仮説は現在も存在しない。地質学的な証拠からはおよそ24億年前に地球が急速に酸化的環境に変化していったことが知られており、大酸化事変(大酸化イベント、Great Oxygenation Event, GOE)とよばれる[220]。これは光合成によって作られた酸素が原因であるというのが最も有力な説明であり、そのため、藍藻は少なくともGOEまでには誕生していたと考えられている。しかしながら、GOE以前にも少量の酸素が存在していたことを示す証拠が複数あり、藍藻の誕生がどこまで遡るのかが議論となっている[221][222]。太古代の地層に多く見られる縞状鉄鉱床は海水中の鉄などが当時すでに存在した酸素によって酸化された結果であるとする説もあるが[220]、一方で藍藻の起源をGOEとほぼ同時期とみなす研究もある[215]。一時期、藍藻固有のバイオマーカーが太古代から見つかり、GOE以前の藍藻および酸素の存在を示す証拠として注目されたが、その後の研究で、見つかったバイオマーカーは後世の汚染である可能性が強く[223]、さらにバイオマーカー自体が藍藻に固有ではないことが判明している[224]。そのほか、藍藻と考えられる化石にストロマトライトがある[1][225](図11a)。現在の地球上に見られるストロマトライトの形成にすべて藍藻が関わっていることから、ストロマトライトの化石も過去の藍藻の存在を示す証拠として扱われていたが[226]、現在ではこれは非生物起源や、藍藻以外の光合成細菌由来のものも含まれていると考えられている[1][227]。そのため、ストロマトライト単独で藍藻の進化について議論することは難しい。
いずれにせよ、藍藻の誕生によって地球環境は激変し(好気的環境、有機物安定的供給、オゾン層形成など)、現在の地球生態系の基礎が築かれた[9][228][229]。酸素発生型光合成生物は藍藻だけである時代が長く続いたが、その後(ある研究では15億年以上前)、ある真核生物にある藍藻が細胞内共生し、やがてこの共生藍藻の増殖や代謝が宿主である真核生物に制御されるようになり、最終的に葉緑体(色素体)とよばれる細胞小器官へと変化した[9][153][230]。この際、藍藻の細胞膜と外膜が色素体の2枚の膜になったと考えられている[231]。この現象は一次共生 (primary endosymbiosis) とよばれ、これによって真核生物が酸素発生型光合成能を獲得した。生物の歴史の中で一次共生は唯1回の現象であったと考えられており、全ての葉緑体は単一の一次共生に由来する(その後、二次共生を経たものもある)。多数の遺伝子を用いた系統解析から、一次共生において共生者となった藍藻は、グロエオマルガリータ属 (Gloeomargarita) という淡水産単細胞性藍藻に近縁な藍藻であったことが示唆されている[232]。
古くは、藍藻は最も"原始的な植物"と考えられ、藍色植物門(藍藻植物、Cyanophyta)、藍藻綱 (Cyanophyceae)に分類されていた[233][234]。しかし葉緑体の共生説が一般的となり、藍藻と他の"植物"の直接的な類縁性は認められなくなった(ただし上記のように、細胞内共生・葉緑体を通してつながっている)。現在でも藍藻は藻類の一群として扱われることが多いが[12][3][5][9]、このような系統的異質性から藻類から除かれることもある(ただし藍藻を除いても藻類は多系統群である)[235][236]。 これらの分類群名は植物命名規約(現 国際藻類・菌類・植物命名規約)に基づくものであり、原核生物である藍藻に対しては近年ではほとんど用いられない[注 10]。また古くは、粘藻綱 (Myxophyceae) や粘藻植物門 (Myxophta)、分裂藻綱 (Schizophyceae) という分類群名が使われていたこともある[3][237]。
藍藻は原核生物であり、細菌(バクテリア、真正細菌)ドメインに属する。細菌の中では、藍藻は比較的独立した系統群を形成しており、シアノバクテリア門(藍色細菌門、学名: Cyanobacteria)として扱われる。メタゲノム研究によって見つかった、藍藻に近縁な従属栄養性細菌群である"メライナバクテリア綱" (Melainabacteria) や"セリキトクロマチア綱" (Sericytochromatia) などは、シアノバクテリア門に含めて扱われることがあるが、その場合は光合成能をもつ藍藻はオキシフォトバクテリア綱 (Oxyphotobacteria)[注 3] にまとめられ、これらの非光合成細菌群と併置される[212][213]。ただし、シアノバクテリア門を光合成性のグループのみに限る考えもある[7]。
藍藻は分類学的には細菌として扱うべきであるが、ほとんどの学名は植物命名規約(現 国際藻類・菌類・植物命名規約)に基づいて提唱されており、国際原核生物命名規約の基で提唱された学名は少ない[238]。
クロロフィル b をもつ藍藻(原核緑藻)は、発見当初は原核緑色植物門 (Prochlorophyta) として藍藻とは別の門に分けられていた[239]。しかしその後の研究から原核緑藻は系統的に藍藻に含まれることが示され、現在では分類群名として原核緑色植物門を用いることはない。ただし「原核緑藻 (prochlorophytes)」という語は、一般名としてはしばしば用いられる。
他の藻類と同様、藍藻はその体制(おおまかな体のつくり)に基づいて分類され、いくつかの目に分けられてきた[47][240][241](下表1)。細菌の分類の基準となっていた「バージェイ細菌分類便覧 (Bergey’s Manual) 第2版」でも基本的には同じ体系が用いられていた[112]。
目 | バージェイ細菌分類便覧 第2版 での分類 | 特徴 | 代表属 |
---|---|---|---|
クロオコックス目 (Chroococcales)[注 11] | subsection I | 単細胞または群体性 | Synechococcus, Synechocystis, Chroococcus, Aphanocapsa, Coelosphaerium, Merismopedia, Microcystis |
プレウロカプサ目 (Pleurocapsales) | subsection II | 単細胞または群体性、内生胞子 (ベオサイト) 形成 | Pleurocapsa, Chroococcidiopsis, Xenococcus |
ユレモ目 (Oscillatoriales) | subsection III | 糸状性、異質細胞を欠く | Oscillatoria, Phormidium, Lyngbya, Arthrospira, Planktothrix, Pseudanabaena |
ネンジュモ目 (Nostocales) | subsection IV | 糸状性 (真分枝なし)、異質細胞あり | Anabaena, Nostoc, Aphanizomenon, Cylindrospermum, Calothrix, Scytonema |
スチゴネマ目 (Stigonematales) | subsection V | 糸状性 (真分枝あり)、異質細胞あり | Stigonema, Hapalosiphon, Fischerella |
しかし分子系統学的研究の結果、上記の分類群の多くは多系統群であることが判明しており、特に単細胞性と糸状性の間では頻繁な平行進化(特に糸状体から単細胞体への進化)が起こったと考えられている[242][241]。2019年現在までに報告されている分子系統解析の結果に基づくシアノバクテリア門内の系統仮説の1つを下に示す。
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
27. 藍藻の系統仮説の一例 (基本的にゲノム塩基配列情報が明らかなもののみ): いくつかの系統解析結果に基づく[232][40][243][244][116][245][213]. ● = 単細胞・群体 (旧クロオコックス目)、▲ = 単細胞・群体、内生胞子あり (旧プレウロカプサ目)、■ = 糸状性 (旧ユレモ目)、★ = 糸状・異質細胞あり (旧ネンジュモ目・スチゴネマ目). |
2019年現在、このような系統関係を完全に反映させた分類体系は提唱されていない。また、分子系統解析が行われた藍藻は、いまだごく一部に限られている[14]。そのため、藍藻の分類体系構築に関しては過渡的な状況にある。2019年現在、形態形質および分子情報に基づく分類体系として、Komárek et al. (2014) をもとにした目レベルの分類体系を下表2に示す[246][247][248]。また藍藻の分類においては、属レベルでも非単系統性(ときに下記の分類体系において複数の目に分かれるほどの)が示されているものが少なくない (Synechococcus、Synechocystis、Lyngbya など)[249]。これらの属の一部に関しては、ゲノムレベルでの分子系統解析に基づいて多数の属に分けることが提唱されている[116][250]。
表2. Komárek et al. (2014) による藍藻の分類体系[246][251][252][252] (その後に報告されたグロエオマルガリータ目を付加)
|
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.