conxunto de vasos que achegan sangue a un elemento do organismo From Wikipedia, the free encyclopedia
A anxioxénese[1] é o proceso fisiolóxico por medio do cal se forman novos vasos sanguíneos a partir de vasos preexistentes,[2][3][4] que foron formados na etapa previa de vasculoxénese (formación dos primeiros vasos de novo no embrión). A anxioxénese continúa o crecemento da vasculatura por procesos de brote e división.[5] A vasculoxénese é a formación durante a embrioxénese de células endoteliais a partir de células precursoras do mesoderma[6] e por neovascularización, aínda que as distincións non sempre son precisas (especialmente en textos vellos). Os primeiros vasos no embrión en desenvolvemento fórmanse por vasculoxénese, despois da cal a anxioxénese é a responsable da maioría, se non todo, o crecemento de vasos sanguíneos durante o desenvolvemento e nas enfermidades.[7] Vascularización é un termo con significado parecido ao de anxioxénese.[8]
A anxioxénese é un proceso normal e vital durante o crecemento e o desenvolvemento, así como na curación de feridas e na formación de tecido de granulación. Porén, é tamén un paso fundamenal na transición de tumores desde un estado benigno a outro maligno, o que motivou o uso de inhibidores da anxioxénese no tratamento do cancro. O papel esencial da anxioxénese no crecemento dos tumores propúxoo inicialmente en 1971 Judah Folkman, quen describiu os tumores como "quentes e sanguíneos",[9] o que ilustraba que, polo menos para moitos tipos de tumores, a alta perfusión e incluso a hiperemia son algo característico.
A anxioxénese por brote foi a primeira forma identificada de anxioxénese e debido a isto é moito máis coñecida que a anxioxénese intususceptiva (por división). Desenvólvese pasando por varios estadios ben caracterizados. O sinal inicial procede de áreas de tecido que están desprovistas de vascularización. A hipoxia reinante nestas áreas causa que o tecido demande máis nutrientes e oxíxeno que permitan que o tecido leve a cabo as súas actividades metabólicas. Por isto, as células parenquimáticas segregan o factor de crecemento endotelial vascular (VEGF-A), que é un factor de crecemento proanxioxénico.[10] Estes sinais biolóxicos activan receptores das células endoteliais presentes nos vasos sanguíneos preexistentes. En segundo lugar, as células endoteliais activadas, tamén chamadas células dos extremos, empezan a liberar encimas chamados proteases que degradan a membrana basal para permitir que as células endoteliais escapen das paredes do vaso orixinal (parental). Entón, as células endoteliais proliferan pola matriz que as rodea e forman brotes sólidos que conectan vasos veciños. As células que proliferan están localizadas detrás das células dos extremos e denomínanse células do talo. A proliferación destas células permite que o brote capilar creza en lonxitude simultaneamente.[11]
A medida que os brotes se estenden cara á fonte do estímulo da anxioxénese, as células endoteliais migran en tándem, usando moléculas de adhesión chamadas integrinas. Estes brotes forman despois aneis que se converten no lume de vasos completos a medida que as células migran ao sitio da anxioxénese. O brote medra varios milímetros por día e permite que crezan novos vasos a través dos ocos na vasculatura. A vasculoxénese por brote é marcadamente diferente da anxioxénese por división, porque a primeira forma vasos completamente novos, como ramificacións, en vez de dividir o lume vasos que xa existían.
A anxioxénese intususceptiva, tamén coñecida como anxioxénese por división, é a formación dun novo vaso sanguíneo pola división en dous dun vaso preexistente. Isto prodúcese porque o lume interno do vaso queda dividido en dous, non porque o vaso forme unha ramificación que se esgalla lateralmente do vaso principal.
A intususcepción observouse primeiro en ratas neonatas. Neste tipo de formación de vasos sanguíneos, a parede capilar esténdese no lume para dividir un determinado vaso en dous desde o seu interior. Distínguense catro fases na anxioxénese intususceptiva:[11]
A intususcepción é importante porque é unha reorganización de células existentes. Permite un amplo incremento no número de capilares sen un incremento correspondente no número de células endoteliais. Isto é especialmente importante no desenvolvemento embrionario, xa que nesa etapa non hai recursos dabondo para crear unha rica microvasculatura con novas células cada vez que se desenvolve un novo vaso.[12]
A estimulación mecánica da anxioxénese non está ben descrita. Hai moita controversia sobre se a tensión de cizalla que actúa sobre os capilares causa a anxioxénese, aínda que os coñecementos actuais suxiren que o aumento das contraccións musculares pode incrementar a anxioxénese.[13] Isto pode deberse a un incfremento na produción de óxido nítrico (NO) durante o exercicio. O óxido nítrico orixina vasodilatación dos vasos sanguíneos.
A estimulación química da anxioxénese realízana varias proteínas anxioxénicas como as integrinas, así como as prostaglandinas, incluíndo varios factores de crecemento como VEGF ou FGF.
Estimulador | Mecanismo |
---|---|
FGF | Promove a proliferación e diferenciación de células endoteliais, células do músculo liso e fibroblastos |
VEGF | Afecta a permeabilidade |
VEGFR e NRP1 | Integran sinais de supervivencia |
Ang1 e Ang2 | Estabilizan os vasos |
PDGF (homodímero BB) e PDGFR | Recrutan células do músculo liso |
TGF-β, endoglina e receptor de TGF-β | ↑Produción de matriz extracelular |
CCL2 | Recruta linfocitos aos sitios de inflamación |
Histamina | |
Integrinas αVβ3, αVβ5 ([14]) e α5β1 | Únense a macromoléculas da matriz e a proteinases |
VE-cadherina e CD31 | Moléculas xuncionais endoteliais |
Efrina | Determina a formación de arterias ou veas |
Activador do plasminóxeno | Remodela a matriz extracelular, libera e activa factores de crecemento |
Inhibidor do activador do plasminóxeno 1 | Estabiliza os vasos próximos |
eNOS e COX-2 | |
AC133 | Regula a diferenciación de anxioblastos |
ID1/ID3 | Regula a transdiferenciación endotelial |
Semaforinas de clase 3 | Modulan a adhesión de células endoteliais, a migración, proliferación e apoptose. Alteran a permeabilidade vascular[15] |
Nogo-A | Regula a migración e proliferación de células endoteliais.[16] Altera a permeabilidade vascular.[17] |
A familia do factor de crecemento de fibroblastos (FGF) cos seus membros máis prototípicos FGF-1 (FGF ácido) e FGF-2 (FGF básico) consta polo menos de 22 membros coñecidos.[18] A maioría constan dunha soa cadea polipeptídica de 16-18 kDa e mostran alta afinidade pola heparina e o heparán sulfato. En xeral, os FGFs estimulan diversas funcóns celulares ao unirse a receptores para o FGF da superficie celular en presenza de proteoglicanos de heparina. A familia do receptor de FGF comprende sete membros e todas estas proteínas receptoras son tirosina quinases receptoras dunha soa cadea polipeptídica, que son activadas por autofosforilación inducida por un mecanismo de dimerización do receptor mediada polo FGF. A activación do receptor dá lugar a un cadoiro de transdución de sinais que leva á activación xénica e diversas respostas biolóxicas, como a diferenciación celular, proliferación e disolución da matriz, iniciando así un proceso de actividade mitoxénica esencial para o crecemento de células endoteliais, fibroblastos e células musculares lisas.
O FGF-1, como caso único entre os 22 membros da familia do FGF, pode unirse aos sete subtipos de receptores de FGF, o que o fai o membro cun espectro de acción máis amplo da familia FGF e un potente mitóxeno para diversos tipos celulares necesarios para armar unha resposta anxioxénica en tecidos danados (hipóxicos), onde ocorre a regulación á alza dos receptores de FGF.[19] O FGF-1 estimula a proliferación e diferenciación de todos os tipos celulares necesarios para construír un vaso arterial, incluíndo células endoteliais e células do músculo liso; este feito distingue o FGF-1 doutros factores de crecemento proanxioxénicos, como o factor de crecemento endotelial vascular (VEGF), que conduce primariamente á formación de novos capilares.[20][21]
Ademais do FGF-1, unha das máis importantes funcións do factor de crecemento de fibroblastos 2 ou básico (FGF-2 ou bFGF) é promocionar a proliferación de células endoteliais e a organización física de ditas células en estruturas de tipo tubular, promovendo así a anxioxénese. O FGF-2 é un factor anxioxénico máis potente que o VEGF ou o PDGF (factor de crecemento derivado de plaquetas); porén, é menos potente que o FGF-1. Ademais de estimularen o crecemento de vasos sanguíneos, o FGF-1 ou ácido (aFGF) e o FGF-2 ou básico (bFGF) son importantes actores na curación de feridas. Estimulan a proliferación de fibroblastos e células endoteliais que dan lugar á anxioxénese e desenvolvemento do tecido de granulación; ambos os dous incrementan a subministración de sangue e enchen os espazos ou cavidades en feridas nas fases iniciais do proceso de curación da ferida.
O factor de crecemento endotelial vascular (VEGF) está demostrado que contribúe de forma importante á anxioxénese, incrementando o número de capilares nunha rede capilar. Os estudos in vitro iniciais demostraron que as céllas endoteliais dos capilares de bovinos proliferan e mostran signos de estruturas de tubos baixo estimulación polo VEGF e o bFGF, aínda que os resultados eran máis pronunciados co VEGF.[22] A regulación á alza do VEGF é un importante compoñente da resposta fisiolóxica ao exercicio e o seu papel na anxioxénese sospéitase que é un posible tratamento en lesións vasculares.[23][24][25][26] Os estudos in vitro demostran claramente que o VEGF é un potente estimulator da anxioxénese porque, na súa presenza, as células endoteliais proliferan e migran, formando finalmente estruturas tubulares que lembran capilares.[13] O VEGF causa un masivo cadoiro de sinalización en células endoteliais. A súa unión ao receptor de VEGF 2 (VEGFR-2) inicia un cadoiro de sinalización de tirosina quinase que estimula a produción de factores que estimulan variadamente a permeabilidade dos vasos (eNOS, producindo óxido nítrico, NO), a proliferación/supervivencia (bFGF), a migración (ICAMs/VCAMs/MMPs) e finalmente a diferenciación en vasos sanguíneos maduros. Mecanicamente, o VEGF é regulado á alza coas contraccións musculares como resultado dun incremento do fluxo sanguíneo nas áreas afectadas. O incremento do fluxo tamén causa un grande aumento na produción de ARNm dos receptores de VEGF 1 e 2. O incremento na produción de recptor significa que a contracción muscular podería causar a regulación á alza do cadoiro de sinalización relacionado coa anxioxénese. Como parte do cadoiro de sinalización anxioxénico, considérase xeralmente que o NO contribúe de forma importante á resposta anxioxénica porque a inhibición do NO reduce significativamente os efectos dos factores de crecemento anxioxénicos. Porén, a inhibición do NO durante o execicio non inhibe a anxioxénese, indicando que hai outros factores implicados na resposta anxioxénica.[13]
As anxiopoetinas Ang1 e Ang2 cómpren para a formación de vasos sanguíneos maduros, como se demostrou con estudos de knockout de xenes en ratos.[27] Ang1 e Ang2 son factores de crecemento proteicos que actúan uníndose aos seus receptores Tie-1 e Tie-2. Aínda que isto é algo discutido, parece que os sinais celulares se transmiten principalmente polo Tie-2, aínda que algúns artigos indican que tamén hai sinalización fisiolóxica a través de Tie-1. Estes receptores son as tirosina quinases. Así, poden iniciar a sinalización celular cando a unión do ligando causa unha dimerización que inicia a fosforilación en tirosinas clave.
Outro contribuínte importante á anxioxénese son as metaloproteinases de matriz (MMP). As MMPs axudan a degradar as proteínas que manteñen sólidas as paredes dos vasos. Esta proteólise permite que as células endoteliais escapen á matriz intersticial como se observa na anxioxénese por brote. A inhibición das MMPs impide a formación de novos capilares.[28] Estes encimas están moi regulados durante o proceso de formación de vasos sanguíneos porque a destrución da matriz extracelular faría diminuír a integridade da microvasculatura.[13]
O ligando 4 similar a delta (Dll4 ou DLL4[29]) é unha proteína cun efecto regulatorio negativo sobre a anxioxénese.[30][31] O DLL4 é un ligando transmembrana para os receptores da familia Notch. Realizáronse moitos estudos que serviron para determinar as consecuencias da acción do DLL4. Un estudo avaliou os efectos de DLL4 sobre a vascularización e crecemento de tumores.[32] Para que un tumor creza e se desenvolva, debe ter unha vascularización axeitada. A vía do VEGF é vital para o desenvolvemento da vasculatura que, á súa vez, axuda aos tumores a crecer. O bloqueo combinado de VEGF e DLL4 ten como resultado a inhibición da progresión de tumores e da anxioxénese no tumor. Isto débese ao impedimento da sinalización das células endoteliais, que detén a proliferación e brote destas células endoteliais. Con esta inhibición, as células non crecen descontroladamente, polo que o cancro detense neste punto. Porén se se levanta o bloqueo, as células empezan outra vez a proliferar.[33]
As semaforinas de clase 3 (SEMA3s) regulan a anxioxénese ao modularen a adhesión, migración e proliferación de células endoteliais e o recrutamento de pericitos.[15] Ademais, as semaforinas poden interferir coa anxioxénese mediada por VEGF, xa que tanto as SEMA3s coma VEGF-A compiten por unirse ao receptor da neuropilina nas células endoteliais.[34][35] Os niveis de expresión relativos de SEMA3s e VEGF-A poden, por tanto, ser importantes para a anxioxénese.[15]
Un inhibidor da anxioxénese pode ser endóxeno ou proceder do exterior como medicamento ou como parte da dieta.
A anxioxénese pode ser unha diana á hora de combater enfermidades como as doenzas cardíacas caracterizadas ou ben por ter unha escasa vascularización ou ben por ter unha vasculatura anormal.[36] A aplicación de compostos específicos que poidan inhibir ou inducir a creación de novos vasos sanguíneos no corpo pode axudar a combater tales doenzas. A presenza de vasos sanguíneos onde non debería haber ningún pode afectar as propiedades mecánicas dun tecido, incrementando a probabilidade de fallo orgánico. A ausencia de vasos sanguíneos nun tecido en reparación ou metabolicamente activo pode inhibir a reparación ou outras funcións exenciais. Varias doenzas, como as feridas crónicas isquémicas, son o resultado dunha formación de vasos sanguíneos insuficiente ou ausente e poden ser tratadas cun aumento local de vasos sanguíneos, o que traerá máis nutrientes ao lugar, facilitando a reparación. Outras doenzas, como a dexeneración macular relacionada coa idade, poden xerarse por un aumento local dos vasos sanguíneos, interferindo con procesos fisiolóxicos normais.
A aplicación clínica moderna do principio da anxioxénese pode dividirse en dúas grandes áreas: terapias antianxioxénicas, coas cales empezou a investigación sobre a anxioxénese, e teraias proanxioxénicas. Aínda que as terapias antianxioxénicas están empregándose para tratar o cancro,[37][38] que require unha abundancia de oxíxeno e nutrientes para proliferar, as terapias proanxioxénicas están explorándose como opcións para tratar doenzas cardiovasculares, a causa de morte número un no mndo occidental. Unha das primeiras aplicacións dos métodos proanxioxénicos en humanos foi un ensaio feito en Alemaña usando o factor de crecemento de fibroblastos 1 (FGF-1) para o tratamento da enfermidade da arteria coronaria.[20][39][40]
En canto ao mecanismo de acción, os métodos proanxioxénicos poden diferenciarse en tres categorías: terapia xénica, que actúa sobre os xenes de interese para amplificalos ou inhibilos; terapia de substitución de proteínas, que principalmente manipula factores de crecemento anxioxénico como FGF-1 ou o factor de crecemento endotelial vascular, VEGF; e terapias baseadas en células, que implican a implantación de tipos celulares específicos.
Aínda hai graves problemas sen resolver en relación coa terapia xénica.[41] Entre as dificultades están a integración efectiva dos xenes terapéuticos no xenoma das células diana, reducindo o risco dunha resposta inmune non desexada, a toxicidade potencial, a inmunoxenicidade, as respostas inflamatorias, e a oncoxénese relacionada cos vectores virais usados na implantación de xenes e a gran complexidade da base xenética da anxioxénese. Os trastornos máis comúns en humanos, como as doenzas cardíacas, presión arterial alta, diabetes e enfermidade de Alzheimer, son causadas máis probablemente polos efectos combinados de variacións en moitos xenes, e, así, inxectar un só xene pode non ser significativamente beneficioso en tales doenzas.
A diferenza do anterior, a terapia con proteínas proanxioxénicas usa proteínas ben definidas e estruturadas con precisión, con doses óptimas previamente definidas da proteína concreta para estados de enfermidade, e con efectos biolóxicos ben coñecidos.[2] Por outra parte, un obstáculo para a terapia de proteínas é o modo de entregalas na área desexada. As rutas de administración de proteínas oral, intravenosa, intraarterial ou intramuscular non sempre son efectivas, xa que a proteína terapéutica pode ser metabolizada ou eliminada antes de que entre no tecido diana. As terapias anxioxénicas baseadas en células aínda están nas primeiras etapas de investigación, con moitas cuestións abertas sobre cal é o mellor tipo de células ou as doses que usar.
As células cancerosas son células que perderon a súa capacidade de dividirse de forma controlada. Un tumor maligno consta dunha poboación de células que crecen e se dividen rapidamente e que acumulan progresivamente mutacións. Porén, os tumores necesitan unha subministración de oxíxeno axeitada e outros nutrientes esenciais para poder crecer alén de certo tamaño (xeralmente 1–2 mm3).[42][43]
Os tumores inducen o crecemento de vasos sanguíneos (anxioxénese) ao segregaren varios factores de crecemento (por exemplo o VEGF) e proteínas. Os factores de crecemento como bFGF e VEGF poden inducir o crecemento de capilares no tumor, que algúns investigadores consideran que fornecen os nutrientes que precisan, permitindo a expansión do tumor. A diferenza dos vasos sanguíneos normais, os vasos do tumor están dilatados e teñen forma irregular.[44] Outros médicos cren que a anxioxénese serve realmente como vía para a circulación de refugallos, retirando os produtos finais biolóxicos segregados polas células cancerosas en rápida división. En ambos os casos, a anxioxénese é un paso necesario para a transición desde un pequeno agrupamento inofensivo de células, que se adoita dicir que é de aproximadamente o tamaño da pequena bóla de metal da punta dun bolígrafo, a un tumor máis longo. A anxioxénese tamén cómpre para o espallamento do tumor ou metástase. Unha soa célula cancerosa pode separarse dun tumor sólido establecido, entrar na circulación sanguínea e ser levada a un sitio distante, onde pode implantarse e empezar a crecer formando un tumor secundario. As probas das que se dispón agora indican que o vaso sanguíneo dun tumor sólido pode, en realidade, ser vasos en mosaico, compostos de células endoteliais e células tumorais. Esta mosaicidade permite un desprendemento substancial de células tumorias na vasculatura, posiblemente contribuíndo á aparición de células tumorais circulantes no sangue periférico dos pacientes con tumores malignos.[45] O subseguinte crecemento de tales metástases tamén requirirá unha subministración de nutrientes e oxíxeno e unha vía para a eliminación de substancias residuais.
As células endoteliais considéranse xeneticamente máis estables que as células cancerosas. Esta estabilidade xenómica ten a vantaxe de que se poden atacar mellor as células endoteliais usando unha terapia antianxixénica, en comparación coa quimioterapia dirixida ás células cancerosas, as cales mutan rapidamente e adquiren resistencia a fármacos durante o tratamento. Por isto, pénsase que as células endoteliais son unha diana ideal para as terapias contra o cancro.[46]
O mecanismo de formación de vasos sanguíneos por anxioxénese iníciase pola división espontánea das células tumorais debido a mutacións. As células tumorais liberan despois estimuladores anxioxénicos. Estes seguidamente viaxan a vasos sanguíneos próximos xa establecidos e activan os seus receptores das células endoteliais. Isto induce unha liberación de encimas proteolíticos desde a vasculatura. Estes encimas teñen como diana un determinado punto do vaso sanguíneo e causan a formación dun poro. Este é o punto a partir do cal medrará o novo vaso sanguíneo. A razón pola cal as células tumorais precisan unha subministración de sangue é que só poden crecer ata os 2 ou 3 milímetros de diámetro a non ser que se estableza unha subministración sanguínea equivalente ao necesario para unhas 50-100 células.[47]
A anxioxénese representa unha excelente diana terapéutica para o tratamento de doenzas cardiovasculares. É un potente proceso fisiolóxico natural polo cal o noso corpo responde ante unha diminución da subministración sanguínea a órganos vitais, denominado neoanxioxénese: a produción de novos vasos colaterais para superar os posibles danos isquémicos.[20] Realizouse un gran número de estudos preclínicos con terapias baseadas en proteínas, xenes e células en modelos animais de isquemia cardíaca, así como con modelos de enfermidade arterail periférica. Éxitos cribles e reproducibles nestes estudos iniciais en animais espertaron grande entusiasmo neste novo enfoque terapéutico, que podería ser trasladado rapidamente ao un uso clínico beneficioso para millóns de pacientes. Non obstante, unha década de probas clínicas de terapias baseadas en xenes e proteínas deseñadas para estimular a anxioxénese en tecidos e órganos con rego sanguíneo menor do normal, levou a unha desilusión tras outra. Aínda que todos estes datos preclínicos, que eran moi prometedores para facer a transición da terapia anxioxénica desde os animais aos humanos, foron dunha maneira ou outra incorporados a ensaios clínicos de primeira fase, nos Estados Unidos, por exemplo, a FDA insistiu ata agora (2007) en que o feito final principal para a aprobación dun axente anxioxénico debe ser unha mellora no rendemento do exercicio dos pacientes tratados.[48]
Estes fallos suxiren que ou ben estas son dianas moleculares erradas para inducir a neovascularización ou ben só poden ser usadas con efectividade se se formulan e administran correctamente, ou mesmo que a súa presentación no contexto do microambiente celular global pode xogar un papel vital na súa utilidade. Pode ser necesario presentar estas proteínas de modo que imite os eventos de sinalización naturais, incluíndo a concentración, perfís espaciais e temporais e a súa presentación simultánea ou secuencial con outros factores apropiados.[49]
A anxioxénese está xeralmente asociada co exercicio aeróbico e o adestramento de resistencia. Mentres que a arterioxénese produce cambios nas redes de vasos que permiten un grande incremento da cantidade total de fluxo na rede, a anxioxénese causa cambios que permiten unha maior chegada de nutrientes en longos períodos de tempo. Os capilares están deseñados para ter a máxima eficiencia na entrega de nutrientes, polo que un incremento no número de capilares posibilita que a rede entregue máis nutrientes nun mesmo intervalo de tempo. Un maior número de capilares tamén permite un maior intercambio de oxíxeno na rede. Isto é fundamentalmente importante no adestramento de resistencia, porque permite que unha persoa continúe adestrándose durante un maior período de tempo. Porén, non hai probas experimentais que suxiran que o aumento da capilaridade sexa necesaria no adestramento de resistencia para incrementar a subministración máxima de oxíxeno.[13]
A sobreexpresión do VEGF causa un incremento da permeabilidade nos vaos sanguíneos ademais de estimular a anxioxénese. Na dexeneración macular húmida, o VEGF causa a proliferación de capilares na retina. Como o aumento da anxioxénese tamén orixina edema, o sangue e outros fluídos retinais fíltranse na retina, causando a perda da vista. Estanse a utilizar con éxito medicamentos antianxioxénicos que teñen como diana as vías do VEGF para tratar este tipo de dexeneración macular.
A anxioxénese que vai desde vasos do corpo do hóspede cara a construtos de tecidos preparados por enxeñaría implantados é esencial para o implante. A integración exitosa do tecido a miúdo depende da boa vascularización do construto, xa que esta proporciona o oxíxeno e os nutrientes e impide a necrose nas áreas centrais do implante.[50] O PDGF estabiliza a vascularización en armazóns de coláxeno-glicosaminoglicano.[51]
Cuantificar os parámetros da vascularización, como a densidade microvascular presenta varias complicacións debido á tinguidura preferente ou a representación limitada de tecidos nos cortes histolóxicos. Investigacións recentes mostraron unha reconstrución 3D completa da estrutura vascular dos tumores e unha cuantificación de estruturas de vasos en tumores completos en modelos animais.[52]
Vascularización é un termo que se pode utilizar case como sinónimo de anxioxénese (formación de vasos sanguíneos),[53] pero ademais é un termo anatómico que se pode atopar na literatura referido aos vasos que achegan sangue a un determinado elemento do organismo, xa sexa un óso, músculo, órgano, tecido etc. Por exemplo, dise que un órgano ten maior densidade de vascularización[54] ou está máis vascularizado que outro.[55][56][57]
Os compoñentes que constitúen a vascularización son os seguintes:
Hai fluxo sanguíneo entre os diferentes tipos de vasos por mor da diferenza de presión entre as arterias e as veas. A presión arterial está condicionada polo grosor da arteria (menor presión canto máis calibre) e coa forza que o corazón impulsa o sangue (presión hidrostática). A presión venosa é netamente inferior á arterial e existe un gradiente de presión arterio-venoso que se fai mínimo nos capilares. Neles, as substancias saen ou entran na corrente de sangue por fenómenos de osmose. Ademais do sistema de recollida venoso, existe un sistema de recollida linfático, que drena os diversos territorios e devolve o seu contido ó sistema venoso.
A presión que exercen as proteínas do sangue, principalmente a albumina denomínase presión oncótica, e determina a cantidade de substancias que circulan entre vaso e tecido, xunto co resto das presións.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.