联合国环境署在2022年发布的年度“排放差距报告(Emissions Gap Report)”指出:“要能走上将全球增温限制在1.5°C之路,全球的年度温室气体排放量必须把8年前订立的政策中预定达成的排放量再降低45%,而且要在2030年后仍继续快速下降,以免把有限的剩余大气碳预算耗尽。[7]:xvi这份报告还评论说,世界应该关注“涵盖广泛的整体经济转型”,而非专注于逐步增量式变化。[7]:xvi
所谓节能是使用更少的能源服务而达到减少能源消耗(英语:Consumption of energy)的目的。为达到目的,可透过更有效的使用(使用更少的能源而达到相同的结果)或减少使用服务数量(例如减少驾车)来实现。节能位于可持续性能源阶层(英语:energy hierachy)结构的顶端。 [96]可通过减少浪费和损失、技术升级以提高效率,以及改进运作和维护来达到节能的目的。
应对气候变化的个人行动包括许多个人选择,例如饮食、旅行、家庭能源耗用、商品和服务的消费以及家庭规模。希望减少碳足迹的人(尤其是在高收入经济体内,又过着高消费生活方式的人)可采取“具有重大影响”行动,例如避免成为飞行常客、避免使用以汽油作燃料的汽车、摄取主要为植物性饮食、少生子女、[100][101]延长衣服和电子产品的使用时间,[102]以及使用电力烹饪及取暖。[103][104]但对于收入较低的人来说,做出这些改变会更加困难,因为他们通常无法负担电动汽车等的成本。过度消费对于气候变化的影响(英语:Effects of climate change)远大于人口增长。[105]过度消费生活方式对环境的影响甚为巨大,全球富人中排名在前10%的,其生活方式的排放量即约占全球总排放量的一半。[106][107]
植树造林(Afforestation)是在以前没有树木覆盖的地方种植树木。依据气候变化情景估计,建立占地达4,000百万公顷(Mha,即6,300 x 6,300公里)的新种植园,到2100年的碳储存能力会超过900吉吨(等于2,300吉吨二氧化碳)。[132]但这类设想并不被认为是可行的积极减排替代方案,[133]因为所需种植园面积过于庞大,会把大多数自然生态系统排除,或是减少粮食生产。[134]植树造林的其中一例是种兆棵树运动(英语:Trillion Tree Campaign)。[135][136]
建筑物区块占全球能源相关二氧化碳排放量的23%。[18]:141大约有一半的能源用于空间调温和把水加热。[195]建筑物中的隔热设施可显著降低一次能源的需求。热泵是种智能式设备,可参与需量反应,有利于变动式(或称间歇式)可再生资源整合到电网中。[196]太阳能热水器直接利用太阳热能。人们自助的做法包括在家庭需求改变时搬到较小的住处、混合使用空间和共同使用设备。[90]:71在建新建物时可使用被动式太阳能建筑设计(英语:passive solar building design)、低耗能建筑(英语:low-energy building)或零碳建筑新技术。此外,在城市的开发,利用颜色更浅、反光性更强的材料,以建造出更节能的建筑。
IPCC. Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; et al , 编. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 2022: 300 [2023-06-24]. (原始内容存档于2022-08-02).: The global benefits of pathways limiting warming to 2°C (>67%) outweigh global mitigation costs over the 21st century, if aggregated economic impacts of climate change are at the moderate to high end of the assessed range, and a weight consistent with economic theory is given to economic impacts over the long term. This holds true even without accounting for benefits in other sustainable development dimensions or nonmarket damages from climate change (medium confidence).
It's critical to tackle coal emissions. blogs.worldbank.org. 2021-10-08 [2022-11-25](英语). Coal power plants produce a fifth of global greenhouse gas emissions – more than any other single source.
Franziska Funke; Linus Mattauch; Inge van den Bijgaart; H. Charles J. Godfray; Cameron Hepburn; David Klenert; Marco Springmann; Nicolas Treich. Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?. Review of Environmental Economics and Policy. 2022-07-19, 16 (2): 000. S2CID 250721559. doi:10.1086/721078(英语). animal-based agriculture and feed crop production account for approximately 83 percent of agricultural land globally and are responsible for approximately 67 percent of deforestation (Poore and Nemecek 2018). This makes livestock farming the single largest driver of greenhouse gas (GHG) emissions, nutrient pollution, and ecosystem loss in the agricultural sector. A failure to mitigate GHG emissions from the food system, especially animal-based agriculture, could prevent the world from meeting the climate objective of limiting global warming to 1.5°C, as set forth in the Paris Climate Agreement, and complicate the path to limiting climate change to well below 2°C of warming (Clark et al. 2020).
Share of cumulative power capacity by technology, 2010-2027. IEA.org. International Energy Agency (IEA). 5 December 2022. (原始内容存档于4 February 2023). Source states "Fossil fuel capacity from IEA (2022), World Energy Outlook 2022. IEA. Licence: CC BY 4.0."
Solar - Fuels & Technologies. IEA. [2022-12-22]. (原始内容存档于2023-06-01) (英国英语). utility-scale solar PV is the least costly option for new electricity generation in a significant majority of countries worldwide
Ruggles, Tyler H.; Caldeira, Ken. Wind and solar generation may reduce the inter-annual variability of peak residual load in certain electricity systems. Applied Energy. 2022-01-01, 305: 117773. ISSN 0306-2619. S2CID 239113921. doi:10.1016/j.apenergy.2021.117773(英语).
Blanco, Herib; Faaij, André. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews. 2018, 81: 1049–1086. ISSN 1364-0321. doi:10.1016/j.rser.2017.07.062.
Herib, Blanco; André, Faaij. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews. 2018, 81: 1049–1086. ISSN 1364-0321. doi:10.1016/j.rser.2017.07.062.
Gürsan, C.; de Gooyert, V. The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?. Renewable and Sustainable Energy Reviews. 2021, 138: 110552. ISSN 1364-0321. S2CID 228885573. doi:10.1016/j.rser.2020.110552.
Crist, Eileen; Ripple, William J.; Ehrlich, Paul R.; Rees, William E.; Wolf, Christopher. Scientists' warning on population(PDF). Science of the Total Environment. 2022, 845: 157166 [2023-06-24]. Bibcode:2022ScTEn.845o7166C. PMID 35803428. S2CID 250387801. doi:10.1016/j.scitotenv.2022.157166. (原始内容存档(PDF)于2022-11-12). Our first action call is a direct, global appeal to all women and men to choose none or at most one child. Individuals, especially if they aspire to large families, may pursue adoption, which is a desirable and compassionate choice for children who are here and need to be cared for.
Moomaw, William R.; Masino, Susan A.; Faison, Edward K. Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Frontiers in Forests and Global Change. 2019, 2. doi:10.3389/ffgc.2019.00027.
Terrer, C.; Phillips, R. P.; Hungate, B. A.; Rosende, J.; Pett-Ridge, J.; Craig, M. E.; van Groenigen, K. J.; Keenan, T. F.; Sulman, B. N.; Stocker, B. D.; Reich, P. B.; Pellegrini, A. F. A.; Pendall, E.; Zhang, H.; Evans, R. D. A trade-off between plant and soil carbon storage under elevated CO2. Nature. March 2021, 591 (7851): 599–603 [2023-06-24]. Bibcode:2021Natur.591..599T. ISSN 1476-4687. PMID 33762765. S2CID 232355402. doi:10.1038/s41586-021-03306-8. hdl:10871/124574. (原始内容存档于2022-12-02) (英语). Although plant biomass often increases in elevated CO2 (eCO2) experiments SOC has been observed to increase, remain unchanged or even decline. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections
Teague, W. R.; Apfelbaum, S.; Lal, R.; Kreuter, U. P.; Rowntree, J.; Davies, C. A.; Conser, R.; Rasmussen, M.; Hatfield, J.; Wang, T.; Wang, F. The role of ruminants in reducing agriculture's carbon footprint in North America. Journal of Soil and Water Conservation. 2016-03-01, 71 (2): 156–164. ISSN 0022-4561. doi:10.2489/jswc.71.2.156(英语).
Tiwari, Shashank; Singh, Chhatarpal; Singh, Jay Shankar. Wetlands: A Major Natural Source Responsible for Methane Emission. Upadhyay, Atul Kumar; Singh, Ranjan; Singh, D. P. (编). Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Singapore: Springer. 2020: 59–74. ISBN 978-981-13-7665-8. S2CID 198421761. doi:10.1007/978-981-13-7665-8_5(英语).
Harenda K.M., Lamentowicz M., Samson M., Chojnicki B.H. (2018) The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In: Zielinski T., Sagan I., Surosz W. (eds) Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_12
Taillardat, Pierre; Thompson, Benjamin S.; Garneau, Michelle; Trottier, Karelle; Friess, Daniel A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus. 2020-10-06, 10 (5): 20190129. PMC 7435041. PMID 32832065. doi:10.1098/rsfs.2019.0129. Analysis of wetland restoration costs relative to the amount of carbon they can sequester revealed that restoration is more cost-effective in coastal wetlands such as mangroves (US$1800 ton C−1) compared with inland wetlands (US$4200–49 200 ton C−1). We advise that for inland wetlands, priority should be given to conservation rather than restoration; while for coastal wetlands, both conservation and restoration may be effective techniques for climate change mitigation.
Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annual Review of Environment and Resources. 2020, 45 (1): 83–112. ISSN 1543-5938. S2CID 225741986. doi:10.1146/annurev-environ-012320-083019(英语).
Ricart, Aurora M.; Krause-Jensen, Dorte; Hancke, Kasper; Price, Nichole N.; Masqué, Pere; Duarte, Carlos M. Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics. Environmental Research Letters. 2022, 17 (8): 081003. Bibcode:2022ERL....17h1003R. S2CID 250973225. doi:10.1088/1748-9326/ac82ff.
Rhodes, James S.; Keith, David W. Biomass with capture: Negative emissions within social and environmental constraints: An editorial comment. Climatic Change. 2008, 87 (3–4): 321–8. Bibcode:2008ClCh...87..321R. doi:10.1007/s10584-007-9387-4.
Kwan, Soo Chen; Hashim, Jamal Hisham. A review on co-benefits of mass public transportation in climate change mitigation. Sustainable Cities and Society. 2016-04-01, 22: 11–18. ISSN 2210-6707. doi:10.1016/j.scs.2016.01.004(英语).
Brandon Graver; Kevin Zhang; Dan Rutherford. CO2 emissions from commercial aviation, 2018(PDF). International Council on Clean Transportation. September 2019 [2023-06-24]. (原始内容存档(PDF)于2019-11-20).
Parmar, N.R.; Nirmal Kumar, J.I.; Joshi, C.G. Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach. Frontiers in Life Science. 2015, 8 (4): 371–378. S2CID 89217740. doi:10.1080/21553769.2015.1063550.
Eckard, R. J.; et al. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science. 2010, 130 (1–3): 47–56. doi:10.1016/j.livsci.2010.02.010.
Sampedro, Jon; Smith, Steven J.; Arto, Iñaki; González-Eguino, Mikel; Markandya, Anil; Mulvaney, Kathleen M.; Pizarro-Irizar, Cristina; Van Dingenen, Rita. Health co-benefits and mitigation costs as per the Paris Agreement under different technological pathways for energy supply. Environment International. 2020, 136: 105513. PMID 32006762. S2CID 211004787. doi:10.1016/j.envint.2020.105513(英语).
UKCCC. The Sixth Carbon Budget Surface Transport(PDF). UKCCC. 2020 [2023-06-24]. (原始内容存档(PDF)于2023-05-09). there is zero net cost to the economy of switching from cars to walking and cycling
Government's Food Strategy 'a missed opportunity' for the climate. Climate Change Committee. 2022-06-13 [2022-12-22]. (原始内容存档于2023-08-02) (英国英语). A wholesale rethink of how we use land in this country is needed to drive down emissions. That includes eating slightly less but better meat and dairy
Zefferman, Matthew R. Cultural multilevel selection suggests neither large or small cooperative agreements are likely to solve climate change without changing the game. Sustainability Science. 2018-01-01, 13 (1): 109–118. ISSN 1862-4057. S2CID 158187220. doi:10.1007/s11625-017-0488-3(英语).
Overland, Indra; Sovacool, Benjamin K. The misallocation of climate research funding. Energy Research & Social Science. 2020-04-01, 62: 101349. ISSN 2214-6296. doi:10.1016/j.erss.2019.101349(英语).
Filho, Walter Leal; Hickmann, Thomas; Nagy, Gustavo J.; Pinho, Patricia; Sharifi, Ayyoob; Minhas, Aprajita; Islam, M Rezaul; Djalanti, Riyanti; García Vinuesa, Antonio; Abubakar, Ismaila Rimi. The Influence of the Corona Virus Pandemic on Sustainable Development Goal 13 and United Nations Framework Convention on Climate Change Processes. Frontiers in Environmental Science. 2022, 10: 784466. ISSN 2296-665X. doi:10.3389/fenvs.2022.784466.