气候变化对人类健康的影响 (英语:Effects of climate change on human health )范围广泛,[ 1] 科学家对此已有深入的研究以及量化。[ 2] [ 3] 这类风险主要有三种,包括:(i) 直接影响(例如因热浪 和极端天气 而造成的灾害)、和间接的(ii) 经与气候相关的生态系统和有关的变化(例如作物产量、蚊 虫生态及海洋生产力)介导的影响,以及(iii)与贫困,人口流离失所和精神健康 问题有关,更为扩散的后果。
于2016年路易斯安那州洪水 期间,救护人员于该州首府巴顿鲁治 救治受中暑 之害的民众。气候变化产生频繁的热浪,让民众面临更高的中暑风险。
更具体而言,健康与高温(全球温度 升高)之间的关系包括以下几方面:[ 4] 弱势群体暴露于热浪、与高温相关的死亡率 、对体能活动和劳动能力以及精神健康的影响。对气候敏感的各式传染 病(如蚊媒疾病 、弧菌 病原体引起的疾病、霍乱 和一些水媒传染病 )在某些地区会增加。[ 4] 健康也受到极端天气事件(如洪水 、热带气旋 (飓风)、干旱 和野火 )的严重影响。例如野火会产生伤害、疾病和空气污染 。其他影响包括海平面上升 而导致的人口迁徙和流离失所、粮食危机和营养不良 、[ 4] 饮用水供应不足、海洋和湖泊中发生有害藻华 以及臭氧 (热浪期间产生的额外空气污染物 )水平升高。[ 5]
全世界都感受到气候变化对健康的影响,其中对弱势群体的影响尤为严重,让他们的脆弱性 更为凸显,特别是对开发中国家 的人而言。[ 4] :15 [ 6] 幼儿最容易受到粮食短缺的影响,而老年人最易受到高温的影响。[ 7]
气候变化对健康的影响已成为国际公共卫生 政策界共同关注的问题。知名综合医学期刊《刺胳针 》早在2009年刊出一篇文章就指出:“气候变化是21世纪最大的全球健康威胁”。[ 8] 世界卫生组织 (WHO)在2015年发布的声明中再将此点重申。[ 1] 澳大利亚医学协会 在2019年正式把气候变化宣布为健康紧急事件。[ 9]
研究发现,当把有关气候变化的沟通方式当作是健康问题,而非仅为环境问题,更能引起公众参与。[ 10] [ 11] 健康是气候变化对人类产生影响中的一项,另外还有环境难民 、安全和社会影响等方面的问题。
本节摘自气候变化的影响 。
气候变化会影响生态环境 、生态系统 和人类社会。气候系统 的变化包括整体性的变暖趋势、更多极端天气事件和海平面上升。这些又反过来会影响到自然环境和野生动物 ,以及人类居住区和社会。[ 12] 人为造成的气候变化,其影响既广又深,在不采取重大气候行动 的情况下更是如此。气候变化造成的预测和观察到的负面影响有时被称为气候危机 。
地球上的气候变化并非均匀分布。特别是大多数的陆地比大多数的海洋变暖得更快,而北极 又比其他大多数地区变暖更快。[ 13] 气候变化对海洋的影响 包括海洋温度 升高、海洋变暖导致冰盖 融化,海平面因而上升、海洋分层 加剧以及洋流 变化(包括大西洋经向翻转环流 减弱。[ 14] :10 大气中的二氧化碳也在酸化海洋 。[ 15]
最近的全球变暖已严重影响到自然生物系统 。[ 16] 影响透过升高温度、干燥土壤和增加野火风险而导致土地退化 。[ 17] :9 世界的物种正在向极地迁移,以进入更寒冷的地区。在陆地上,许多物种迁移到地势较高处,而海洋物种则进入更深处以寻找更冷的水域。[ 18] 当地球升温达2°C(3.6°F)时,大约有10%的陆上物种将会变成极危物种 。[ 19] :259
一篇于2021年发表在《刺胳针》上的文章指出,气候变化对各种人口健康的影响并不相同。最重大的影响往往落在最弱势群体身上,例如穷人、妇女、儿童、老人、已有健康问题的人、其他少数族群和户外工作者。[ 20] :13
人们的健康模式有某些可预测因素,这些因素可决定不同个人的社会脆弱性。所谈的因素可归类为“人口的、社会经济的、住房的、健康的(如既有健康状况)、邻里的和地理因素的”。[ 21]
图示,说明各种气候变化因素产生的人类健康影响。
气候变化经三个主要途径(机制或风险)与健康结果发生关联:[ 18] :Figure 2
直接机制:极端天气导致风暴、洪水、干旱和热浪增加(野火也归入此类)[ 4]
间接机制:透过生物圈 的变化而产生(例如,疾病负担 和疾病媒介的散布,还有食物供应、水质 、空气污染、土地利用 和生态等变化))
人类社会动态(年龄和性别、健康状况、社会经济地位 、社会资本 、公共卫生基础设施、人口流动和冲突)
这些健康风险“因有社会和地理的维度,在世界各地分布不均,并受到社会和经济发展、技术和医疗保健 服务提供的影响”。[ 18]
气候变化对健康和福祉造成的直接、间接和社会动态影响,会产生以下的结果:心血管疾病 、呼吸系统疾病 、传染病、营养不良、精神疾患 、过敏 、创伤 和中毒 。[ 18] :Figure 2
由于气候引发的灾害(如洪水等)会导致医疗系统 崩溃,医疗保健 的提供也受到影响。因此建立具有气候韧性 的医疗系统是当务之急。 [ 22] [ 4] :15
2019-20澳大利亚丛林大火季节 期间所产生的浓烟在大城雪梨 内弥漫,而直接对某些人产生精神健康的影响(摄于2019年)。
本节摘自气候变化对精神健康的影响 。
气候变化对精神健康和福祉会造成相当负面的影响,特别是对于弱势群体和那些已罹患严重精神疾患者。[ 23] 这类影响可经三种主要途径发生:直接、间接或通过知觉感受。[ 23] 直接途径有因暴露于极端天气而引起压力相关的反应,例如创伤后压力症候群 (PTSD)。科学研究已将精神健康结果与几种与气候相关的暴露 - 高温、湿度、降水 、干旱、野火和洪水 - 作联系。[ 24] 间接途径是经破坏经济和社会的活动,例如当农地生产粮食的能力转弱时。第三条途径是仅感受到气候变化的威胁,但尚未受到影响的人。[ 23]
多项研究已针对弱势群体和弱势生命阶段,包括已患有精神疾病的人、原住民 、儿童和青少年 的精神健康指标(如精神病院 入院率、死亡率、自残 率和自杀 率等)作过衡量。对气候变化威胁的情绪反应包括生态焦虑 、生态悲痛情绪 和生态愤怒(eco-anger)。[ 25] [ 26] 这些情绪虽然导致不快,但通常无害,并可能是对自然界退化的理性反应,而激发调适性行动。[ 27]
评估气候变化对精神健康的确切影响有其困难,极端高温事件增多对精神健康构成明显风险,可经与心理健康相关的住院率和自杀率增加来显示。[ 28] :9
更多信息:仪器测量地表温度
全球气温升高将发生如下的影响:极端高温侵袭,弱势群体暴露于热浪、体力活动变化、劳动能力变化、高温和情绪(精神健康)以及与高温相关的死亡率。[ 4]
对于1850年到1900年间和2011年到2020年间的两段时期,根据多个独立数据来源取得的全球陆地和海面 的综合温度,显示已平均升高1.09°C(范围:0.95至1.20°C)。[ 29] 自1970年代起,这种趋势比过去至少2,000年中的任何50年区段间的升高速度都要快。[ 29]
更多信息:气候变化的影响
气候变化让热浪发生的频率和严重程度都升高,而增加人们的热负荷。热符合让人体发生高热 、中暑 和其他有害影响。热病 影响到许多人体器官和系统,包括:大脑 、心脏 、肾 脏和肝脏 等。[ 30] 热浪还导致慢性肾脏病 (CKD) 流行。[ 31] [ 32] 长时间热暴露、体力消耗和脱水就有机会让CKD发生。 [ 31] [ 32]
据估计,人们在热浪期间死于慢性肺部疾病的风险,比在一般夏季气温的情况下要高出1.8-8.2%。[ 33] 高温引起的身体压力也会导致体液流失,而破坏肺部血液灌流,加上较高的污染物浓度,会导致支气管发炎 。[ 34] 对于患有中度至重度慢性阻塞性肺疾病 (COPD) 的人而言,室内温度升高会导致呼吸困难、咳嗽 和痰 量增加。[ 35] 此外,估计在29°C以上的温度,每升高1°C,慢性阻塞性肺病患者的住院率就会增加8%。[ 36]
人体即使在活动水平很低的情况下,仍需要依赖水蒸发冷却方式以防止过热。热浪期间的环境温度和湿度过高,可能无法达到充分的水蒸发冷却。湿球温度 持续超过35°C (95°F) 时,会超越人体系统的韧性,而无法充分冷却皮肤。[ 37] [ 38] 一项研究的结论是即使是年轻又健康的人,在湿球温度高于31°C 时,可能也无法将其核心温度维持在维生的限度之内。[ 39]
截至2020年,世上只有两个气象站记录到35°C的湿球温度,而且时间短暂,但随著气候持续变化,这类事件的频率和持续时间预计还会增加。[ 40] [ 41] [ 42]
长者和患有共病症 的人,因气温上升而面临显著升高的健康风险。[ 36] 暴露在极端高温下“会对65岁以上的长者、城市中的人群以及有健康问题的人,造成严重的健康危害”。[ 4]
预计全球人的睡眠会因全球变暖而受到严重影响,尤其是对低收入国家的居民而言。 [ 43] 记录中,夜间的环境温度增幅最大。[ 44] [ 45]
有认知健康问题(例如抑郁症 、失智症 、帕金森氏病 )的人在面对高温时会有更大的风险,并且“需要格外小心”,[ 46] 因为认知能力受到高温影响会有不同程度的后果。[ 47] 患有糖尿病 、体重过重、睡眠不足 或患有心血管疾病 /脑血管疾病 的人应避免过多的热暴露。[ 46] [ 48]
美国乔治亚州 首府亚特兰大 ,图中蓝色部分是凉爽地区、红色是温暖地区,而白色则是高热地区。
热浪透过城市热岛 效应,对城市地区的影响往往更为明显。城市通常比周围农村地区更暖和。[ 49] :2926 这种影响是由许多城市的建造方式所造成。例如当地地面通常铺有大面积的沥青、绿地不足,还有许多能吸收和保住温度的建筑,这些建筑又会阻挡有冷却效果的微风及通风作用。[ 36] [ 49] :2926 缺乏水景是另一个原因。[ 49] :2926
全球在1983年至2016年间,曝露于湿球温度高于30°C极端式温度的城市增加两倍(受到影响的人口有17亿)。[ 50] 如果不把这些城市的人口增长列入考虑,这种增加约为50%。[ 50] 城市地区和其中生活空间通常会比周围的农村地区温暖得多,部分原因是因有城市热岛效应的缘故。[ 51] [ 50]
城市由于人口密集、城市热岛效应、经常靠近海岸和水道,以及依赖老化的基础设施网络,经常会是明显受到气候影响的所在。[ 52]
健康专家警告说,“暴露在极端高温下会增加死于心血管、脑血管和呼吸系统疾病以及全因死亡。65岁以上人群与高温相关的死亡人数在2019年创下历史新高,估计有345,000例"。[ 4] :9
在2003年欧洲热浪 期间,曾发生70,000死亡案例。[ 53] 2015年6月,巴基斯坦 喀拉蚩 发生温度高达49°C(120°F)的严重热浪,也导致2,000多人死亡。[ 54] [ 55] 估计从2020年开始,美国每年有超过1,300人死于极端高温。[ 56]
增加室内温控(空气调节 )会有助于防止与热相关的死亡率,但目前的空调技术通常会导致温室气体排放、空气污染、电力需求抵达峰值和城市热岛效应,是不具持续性的做法。 [ 4] :17
如果建筑物设计得足以改变室内气候,或者如一般居民在此方面得到更好的教育而能即时采取行动,就能把热浪造成的死亡率降低。 [ 57] [ 58]
热暴露会影响人们的工作能力。[ 20] :8 《刺胳针》杂志的年度倒计时(Countdown Report)报告将劳动能力的变化作为一项指标而进行调查。发现在2021年期间,高温使全球潜在劳动时间减少达4,700亿小时,比1990年代发生的年均损失高出37%。职业性热暴露对开发中国家农业部门的劳动者影响尤其大。在这些国家中,绝大部分的工时损失 (87%) 均发生在农业部门。[ 3] :1625
在极端高温下工作会导致劳动力生产率和参与度下降,因为员工的健康会因高温相关的健康问题(例如脱水、疲劳、头晕和精神错乱 )而降低。[ 59] [ 2] :1073–1074
关于体育活动,已观察到的是“炎热天气降低进行锻炼的可能性”。[ 3] :1625 此外,在过热的天气参加体育活动会导致受伤,甚至是死亡。[ 2] :1073–1074 众人皆知规律的体力活动对于健康有益,包括心理健康。[ 3] :1625 因此气候变化导致炎热天气增加,会因人们减少参与而间接影响到精神健康。
示意图,显示全球各地因气候变化而导致不同的自然灾害 易发生的区域。
气候变化已增加一些极端天气事件的周期性和强度。[ 60] 将极端天气的归因 于人为产生的,置信度最高的是极端高温和低温事件的频率或是强度的变化,而对于强降水增加和干旱强度增加的,则给予某些置信度。 [ 61]
洪水、飓风、干旱和野火等极端天气事件会导致人员受伤、死亡和传染病传播。例如,当地流行病 发生的原因可能是由于医院 和卫生设施 服务等基础设施遭到破坏,也可能是由于当地生态和环境发生变化的结果。
洪水对人们的健康和福祉会同时造成短期和长期的负面影响。短期影响包括死亡、伤害和疾病,而长期影响发生在非传染性疾病 形成和社会心理 健康方面。[ 62]
气候变暖将加剧降雨事件,而导致有更多洪水发生,且程度会更严重。[ 63] :1156 一些地区的洪水会增加,一些地区会减少,取决于几个因素:例如融雪量、土壤所含水分和降雨量的变化。[ 63] :1156 洪水对人们的健康和福祉同时具有短期和长期的负面影响。短期影响包括死亡、伤害和疾病,而长期影响包括非传染性疾病和社会心理健康方面。[ 62]
2022年巴基斯坦洪灾 即为此类案例中的一项。[ 64] [ 65] 洪水会经各种直接和间接的方式影响人们的健康,后者包括如疟疾、登革热 和其他皮肤病 等的爆发。[ 66] [ 67] [ 68]
更强的热带气旋会创造更多让病媒繁殖和传染病蔓延的机会。[ 69] [ 70] [ 70] 极端天气会产生强风、把病媒传播数万公里以外之处及把新传染原引入从前未曾有过的地区,让当地人更易受到感染。 [ 69]
热带气旋也会让雨水增加,而导致洪水泛滥,并造成花粉 粒破裂,释放出可被人吸入的空气过敏原 。雷暴 导致花粉粒在地面聚集,经渗透压休克 而破裂,导致进入大气中的致敏源增加。雷暴过后大约20-30分钟,花粉过敏者会因吸入高浓度的致敏肽 ,会增大严重哮喘 发作的风险。[ 36]
气候变化会影响到与干旱相关的多种因素,例如降雨量和雨水再次蒸发的速度。变暖增加世界大部分地区干旱的严重程度和频率。[ 71] [ 72] :1057 许多干旱造成的后果都会影响人类健康。主要是由于食物供应的破坏(作物减产)、营养不良 以及随之而来的许多相关疾病和健康问题。
美国犹他州 西部沙漠野火所产生的空气污染,气候变化导致野火频仍发生,而且强度越来越大。
气候变化把野火发生的可能性和活动都升高。[ 73] 气候变化导致地面温度升高,其影响包括融雪日期提前、植被 比预期干燥、潜在火灾天数增加、夏季干旱发生率增加以及旱季期间拉长。[ 74]
温暖的春季 和夏季 温度把构成森林地面材料的可燃性 升高。[ 74] 此外,野火会向大气释放气胶 、污染空气、改变云和降水模式,加剧气候变化。
野火产生的烟含有破坏人体健康的悬浮微粒 。[ 75] 此类污染物主要是一氧化碳 和一氧化氮 。[ 74] 野火透过燃烧森林和人造基础设施,产生的烟雾会释放出其他有毒 和致癌化合物(例如甲醛 和碳氢化合物 )。[ 74] 这些污染物可避开粘膜纤毛清除 系统,在上呼吸道 沉积后发挥毒性作用,损害人体健康。[ 74]
野火烟雾对健康的影响包括导致哮喘和慢性阻塞性肺病等呼吸系统疾病的恶化和发展、肺癌 、间皮瘤 和肺结核 的风险提升、气道高反应过度增加、发炎介质和凝血因子水平变化,以及呼吸道感染 。[ 75] 烟雾还会对子宫 内胎儿发育产生影响,让新生儿出生体重偏低。[ 76] 由于野火烟雾通常会四处传播,因此会影响到许多人群的健康。[ 77]
对气候敏感的传染病可分为:虫媒疾病(通过蚊虫、蜱虫 等传播)、水媒传染病 和食源性疾病 。[ 2] :1107 气候变化会影响前述疾病的分布,[ 20] :12 例如扩大这些疾病及其媒介的地理分布以及季节性。
由于气候变化导致微生物和媒介发生地理范围的变化,还会导致传染病进入新的地区。有害微生物可对更高的温度产生调适作用,让它们更能耐受人类的体热防御功能。[ 78]
图中的埃及斑蚊 是传播登革热 的媒介。
图中的斯氏按蚊 是传播疟疾 的媒介。蚊虫尾部的血滴是吸血过多后外溢的部分。进行蚊虫防治可控制疟疾的散布。
对气候敏感的蚊媒疾病包括疟疾 、象皮病 、[裂谷热]]、黄热病 、登革热 、兹卡病毒 和屈公病 。[ 79] [ 80] [ 81] 科学家们在2022年发现,由于气温上升,如登革热、疟疾和其他蚊媒疾病的传播的区域正在扩大,[ 2] :1062 而有可能让疟疾回到以前已遭根除的地区。[ 69]
由于气温升高,蜱虫正在扩大其地理分布,会让新的人口有曝露的风险。蜱虫会传播莱姆病 和森林脑炎 。气候变化将会增加这类疾病在北半球 的发病率。[ 2] :1094 例如一篇针对医学文献的审查,发现“升温2°C后,美国可能会在接下来的几十年里增加莱姆病的病例数目,达到20%以上,并导致一年一度的莱姆病季节更早发生和为期更长。[ 2] :1094
主条目:水媒传染病与气候变化
有一系列水媒传染病 和寄生虫 会在未来造成更大的健康风险,但会因地区而异。例如在非洲 ,隐孢子虫属 和兰氏贾第鞭毛虫 (两种原生动物寄生虫 )会增加,均由于气温升高和干旱所造成。[ 2] :1095 [ 2] :1107
科学家预计由弧菌属 (特别是霍乱弧菌 )引起的疾病暴发,在发生率和强度方面都会增加。[ 2] :1107 一个原因是具有适合弧菌存在条件的海岸线区域,因气候变化引起的海面温度 上升和海面盐度变化而增加。[ 20] :12 这些病原体会引起胃肠炎 、霍乱、伤口感染和败血症 。据观察在2011-21年期间,“波罗的海 适合弧菌属传播的海岸线面积已增加35%,大西洋 东北部已增加25%,太平洋 西北部增加4%。[ 20] :12 此外,由于气候变化导致的高温天数、强降雨事件和洪水的发生次数增加,会升高霍乱发生的风险。[ 2] :1045
北美洲 五大湖 之一的伊利湖 于2009年发生的蓝菌门 藻华 。这类藻华对人类、动物,甚至是生态系统皆有害。
海洋和湖泊因变暖,导致有害藻类 大量繁殖。[ 69] [ 81] [ 82] 地表水 在干旱期间更易受到有害藻华和微生物增殖的影响。[ 83] 藻华会增加水的浊度 ,导致水生植物窒息,会耗尽氧气,导致鱼类死亡。某些种类的蓝藻 会产生神经毒素 、肝毒素 、细胞毒性 或内毒素 ,这些毒素会导致严重,甚至是致命的人类神经系统、肝脏和消化系统疾病。蓝藻在较温暖的温度下(尤其是25°C以上)生长得最好,因此世界上因气候变化而普遍变暖的地区会经历更频繁、时间更长的藻华问题。[ 84]
有种拟菱形藻属 会产生多莫酸 ,会导致失忆性贝类中毒 (包含失忆症 、脑损伤 ,甚至是死亡]])。[ 85] [ 86] 该物种的毒性已被证明会随海洋酸化相关的二氧化碳浓度增加而增加。[ 85] 有害藻华产生的一些更常见的疾病包括:雪卡毒鱼类中毒 、麻痹性贝毒 、氮杂螺酸 贝类中毒、腹泻性贝类中毒 、神经性贝类中毒 和上述的失忆性贝类中毒。[ 85]
位于美国德克萨斯州 休斯顿 西南部的城镇 - 古夫顿 的注意高浓度臭氧警示牌。
地表臭氧(即对流层臭氧 )与环境温度之间的关系很复杂。其中气温和水含量的变化会影响空气的化学性质,以及产生和消除臭氧的化学反应速率。许多化学反应速率会随温度升高而增加,导致臭氧产数量增加。在气候变化的预测中显示气温升高和大气中的水蒸气会增加美国东部等受污染地区的地表臭氧。 [ 87]
另一方面,如果通过政策和行动继续减少人为臭氧前体(例如氮氧化物 )排放,臭氧浓度会在气候变暖的情况下降低。[ 88] 因此未来地表臭氧浓度取决于所采取的气候变化缓解措施(导致的甲烷排放量)以及所采取的空气污染控制措施。[ 89] :884
在美国发生热浪期间,会经常出现地表臭氧浓度升高。[ 88] 在美国东部的大部分地区,热浪期间的臭氧浓度比夏季平均水平至少高出20%。[ 88] 广义而言,空气污染程度高的城市,其地表臭氧水平较高。[ 89] :876 城市地区的臭氧污染会影响当地稠密的人口,而当地稠密的车辆会导致情况恶化,因为车辆会排放二氧化氮 及挥发性有机化合物 ,此两项是增高臭氧浓度的元凶。[ 90]
有大量证据显示地表臭氧会损害肺 功能,以及刺激呼吸系统 。[ 91] [ 92] 暴露于臭氧(以及产生臭氧的污染物)与过早死亡、哮喘 、支气管炎 、心脏病 发作和其他心肺有关的问题有关联。 [ 93] [ 94] 高浓度臭氧会刺激肺部,影响呼吸功能,尤其是对于哮喘患者。[ 88] 呼吸受臭氧污染的空气,发生风险最大的人群是那些有呼吸系统问题的人、儿童、老年人和通常长时间呆在户外的人(例如建筑工人)。[ 95]
较高水平的室内和室外二氧化碳水平会损害人类的认知能力。[ 96] [ 97] [ 98]
图像,描绘个人罹患过敏性鼻炎 的症状(通常由花粉过敏所引起)。
气候变暖会导致世界某些地区的花粉季节长度和空气中花粉浓度增加。例如,在北半球中纬度地区,春季花粉季节会提前开始。[ 2] :1049 而对花粉过敏(花粉症(过敏性鼻窦炎))的人造成影响。[ 99] 大气中二氧化碳浓度上升,而由此产生的二氧化碳肥料效应 也会造成花粉增加。[ 2] :1096
气候变化会增加暴力冲突的风险,而导致受伤和死亡。过热会让人变得易怒,升高暴力倾向,导致冲突发生。[ 100] 气候变化会对本已易发冲突地区,加剧其资源稀缺或人口迁移问题,而对健康产生后续影响。[ 101] [ 102]
然而观察到的气候变化对冲突风险的影响,会较文化、社会经济和政治原因的为小。有证据显示国家内部从农村到城市的移民加剧暴力多发地区的冲突风险。但没有证据显示国家之间的移民会增加暴力风险。[ 2] :1008,1128
研究人员发现冬季气温升高与在大型湖泊的溺水 事故之间存在很强的相关性(因为水面冰层变得越来越薄和脆弱,容易发生意外溺水)。[ 103]
关于气候变化对蛇咬伤的流行病学影响,现有证据仍属有限,但预计此种风险会在地理上发生转移:在北美洲 往北,在南美洲 和莫三比克 往南,还有斯里兰卡 的蛇咬伤发生率会增加。[ 104]
气候变化经“多重且相互关联的途径”影响到粮食安全 的许多方面。[ 3] :1619 其中许多与气候变化对农业的影响 有关,例如更多的极端天气事件导致作物歉收,这问题在许多地区发生粮食不安全危机中居于首要地位。粮食不安全表示会有更多的营养不良及其相关的健康问题。全球的粮食不安全状况正在加剧(一些根本原因与气候变化有关,而另一些则无关),全球在2020年约有7.20-8.11亿人遭受饥饿之害。[ 3] :1629
全球因气候变化而引起的粮食供应变化,最终导致的死亡人数难以估计。联合国 政府间气候变化专门委员会 (IPCC)于2022年发表的IPCC第六次评估报告 ,其中关于粮食安全的章节中没提起相关数字。[ 105] 于2016年所做的一项电脑模拟研究发现,“全球到2050年,与气候变化相关的成人死亡人数与没有气候变化的参考情景相比,会净增加529,000 人。”[ 106] [ 107]
本节摘自气候变化对农业的影响 #Reduced nutritional value of crops。
大气中二氧化碳的变化会降低某些作物中的营养品质,例如小麦 的蛋白质 和某些矿物质 含量会降低。[ 108] :439 [ 109] 尤其是对C3类二氧化碳固定 植物(例如小麦、燕麦 、水稻 )的营养品质风险更大:预计蛋白质和矿物质(例如锌 和铁 )含量会降低,[ 110] :1379 可能降低的幅度在3%至17%。[ 111] 这是针对2050年的预期大气二氧化碳水平下种植粮食的结果。研究报告撰写者采用联合国粮食及农业组织 和其他公共来源的数据,对225种不同的主食,例如小麦、大米 、玉米 、蔬菜 、根茎和水果,经分析后而得到的数字。[ 112]
一项在2021年关于海洋食物安全的新闻标题 写道:“在2018-2020年期间,与2003-2005年期间相比,有近70%的国家领海的平均海面温度将有所上升,这反映出气候变化对海洋食物生产力以及海洋食物安全的威胁越来越大。”[ 20] :14
更多信息:水安全
世界综合水安全指数(根据水的可用性、可取得性、安全及品质,以及水管理指数的综合结果)指数"0到1",指数越高表示水安全程度越高。[ 113]
能够获得WASH 的服务(即清洁用水、污水处理以及卫生做法)对于健康生活和福祉非常重要。[ 114]
本节摘自气候变化的影响 #Water security
水资源 会以多种方式受到气候变化的影响。可用淡水 总量可能会发生变化,例如由于干燥期或是干旱所造成。暴雨和洪水会对水质产生影响:地表径流增加会把污染物携带进入水体 中。在沿海地区,由于更高的海平面和更强烈的风暴,有更多的盐会回溯进入水源。较高的温度也会直接降低水质:温水含有较少的氧气。[ 115] 水循环 发生变化,会威胁现有和未来的水基础设施。由于未来水循环变率存有很大的不确定性,导致规划水利基础设施投资会变得更加困难。[ 116]
参见:减缓气候变化的共同效益
气候变化缓解 措施产生的健康效益(也称为“共同效益”)相当显著:不仅可减轻对未来健康的影响,且可直接改善健康。[ 117] 减缓气候变化与各种共同效益(例如减少空气污染和其相关的健康利益)相互关联,[ 118] 而在执行方式(例如透过不同的决策)也可以决定其对生活水平的影响(牵涉是否有不平等及贫困,以及减缓的方式)。[ 119]
有许多与气候行动相关的健康共同效益,包括更清洁的空气、更健康的饮食(例如少摄取红肉 )、更积极的生活方式以及更多接触绿色城市空间。[ 4] :26 接触城市绿色空间对精神健康有益。[ 4] :18
与目前的气候变化情景 (关于温室气体排放和减缓的措施)相比,到2040年,在9个国家中,“可持续情景”能每年减118万与空气污染相关的死亡、586万与饮食相关的死亡和115万因缺乏身体活动的死亡。其益处归因于减少直接温室气体排放和减少接触有害污染物的相应行动,以及改善饮食和身体活动。[ 120] 燃烧化石燃料而产生的空气污染既是全球变暖的主要驱动因素,也是每年造成大量死亡案例的原因,估计全球于2018年的超额死亡人数有870万人。[ 121] [ 122]
将健康作为国家自定贡献 的一个重点,可提供机会来提高企图心,以实现健康共同效益。[ 120]
据预测,气候变化将为温带地区带来一些好处,例如因寒冷暴露而导致的死亡人数会减少,以及一些混合效应,例如非洲疟疾传播范围和传播受到影响而发生变化。[ 123] :48 但这种变化带来的好处远不及对健康产生的负面影响,尤其是对开发中国家而言。[ 124]
简式级联样式图表,展现同一健康 概念中对气候变化所导致终极恶果的描述。[ 125]
估计全球因气候变化影响而造成的估算死亡率,或是失能调整生命年 (DALY)会非常困难。世界卫生组织在2014年从事的一项研究试图达到此目的,把气候变化对人类健康的影响做估计,但并未将所有因素包括在内。[ 126] 例如更频繁和极端风暴的影响被排除在外。但确实估算过老年人因热暴露、腹泻、疟疾、登革热、海岸淹水和儿童营养不良等原因所导致的死亡人数。报告撰写者估计在2030年至2050年期间,预计气候变化将每年造成额外250,000人死亡,但也表示“这些数字并非对气候变化在健康总体影响的预测,因为我们无法把几个重要的因果关系途径进行量化。[ 126]
估计全球在2004年,有3%的腹泻、3%的疟疾和3.8%的登革热死亡是由气候变化所引起。[ 127] 在2004年全因死亡率中约占0.2%,其中的85%是儿童。此研究把更频繁和极端风暴的影响排除在外。
预计气候变化对健康的影响将随著不同气候变化情景中的持续全球变暖而上升。[ 128] [ 129]
与气候变化相关的健康问题几乎多数由弱势群体(例如沿海居民、原住民 及经济弱势社区)来担负。结果是社会人口群体中的弱势者要面临不平等的风险。[ 130] 通常这些人对人为的全球变暖有不成比例的低度贡献,而引起对所谓气候正义 的担忧。[ 131] [ 132] [ 129]
气候变化对移民活动有多种影响,而会导致移民人数减少或是增加。[ 2] :1079 迁徙活动会影响到健康和福祉,尤其是精神健康。气候变化背景下的迁移可分为四种类型:适应性迁移(另见气候变化调适 )、非自愿迁移、有组织的人口迁移和不迁移(即人们不能或是不愿迁移,即使是受到建议之后)。[ 2] :1079
更多信息:个人应对气候变化的行动
研究发现在把气候变化问题传达给公众时,如果将其描述为与健康有关,而非局限为环境问题,会提高其参与做减缓以及调适的机会。在将报导置于健康相关的篇幅内,与置于强调环境厄运的篇幅内做比较时,情况更是如此,这种结果至少在2017年之前的大众传媒中很常见。[ 133] [ 134]
宣传应对气候变化可产生健康的协同效益,会有助于支持温室气体减排战略。[ 52] 保障健康 - 尤其是最弱势群体的 - 是地方气候变化适应目标中的首要之务。 [ 52]
由于气候变化会对人类健康产生重大影响,[ 135] [ 136] 已成为公共卫生政策的主要关注点。美国国家环境保护局 (EPA)早在1989年针对全球变暖与人类健康发布一份长达100页的报告。[ 129] [ 137] 到21世纪初,气候变化开始成为需全球共同解决的公共卫生问题,例如在2006年,联合国 第7任秘书长 科菲·安南 在肯亚 奈洛比 即已提出。 从2018年以来,发生如2018年热浪 、格蕾塔·童贝里 效应和2018年10月IPCC全球升温1.5ºC特别报告 等因素,进一步增加应对这种变化对健康影响的紧迫性。[ 129] [ 52] [ 132] [ 129]
世界银行 建议,应在两个领域进行投资来提高具气候敏感度的医疗系统韧性:[ 138]
强化医疗系统以提高韧性,并建立能力 以应对气候变化造成的各种环境和健康的影响(例如早期预警系统、灾害管理 系统);和
对不断变化的疾病负担(例如针对特定疾病、特定营养)制定应对计画。
Cissé, G., R. McLeman, H. Adams, P. Aldunce, K. Bowen, D. Campbell-Lendrum, S. Clayton, K.L. Ebi, J. Hess, C. Huang, Q. Liu, G. McGregor, J. Semenza, and M.C. Tirado, 2022: Chapter 7: Health, Wellbeing, and the Changing Structure of Communities (页面存档备份 ,存于互联网档案馆 ). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (页面存档备份 ,存于互联网档案馆 ) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 1041–1170, doi:10.1017/9781009325844.009.
Marina Romanello, Claudia Di Napoli, Paul Drummond, Carole Green, Harry Kennard, Pete Lampard, Daniel Scamman, Nigel Arnell, Sonja Ayeb-Karlsson, Lea Berrang Ford, Kristine Belesova, Kathryn Bowen, Wenjia Cai, Max Callaghan, Diarmid Campbell-Lendrum, Jonathan Chambers, Kim R van Daalen, Carole Dalin, Niheer Dasandi, Shouro Dasgupta, Michael Davies, Paula Dominguez-Salas, Robert Dubrow, Kristie L Ebi, Matthew Eckelman, Paul Ekins, Luis E Escobar, Lucien Georgeson, Hilary Graham, Samuel H Gunther, Ian Hamilton, Yun Hang, Risto Hänninen, Stella Hartinger, Kehan He, Jeremy J Hess, Shih-Che Hsu, Slava Jankin, Louis Jamart et al. (2022) The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels (页面存档备份 ,存于互联网档案馆 ), The Lancet, Vol 400 November 5, DOI: 10.1016/ S0140-6736(22)01540-9
Romanello, Marina; McGushin, Alice; Di Napoli, Claudia; Drummond, Paul; Hughes, Nick; Jamart, Louis; Kennard, Harry; Lampard, Pete; Solano Rodriguez, Baltazar; Arnell, Nigel; Ayeb-Karlsson, Sonja; Belesova, Kristine; Cai, Wenjia; Campbell-Lendrum, Diarmid; Capstick, Stuart; Chambers, Jonathan; Chu, Lingzhi; Ciampi, Luisa; Dalin, Carole; Dasandi, Niheer; Dasgupta, Shouro; Davies, Michael; Dominguez-Salas, Paula; Dubrow, Robert; Ebi, Kristie L; Eckelman, Matthew; Ekins, Paul; Escobar, Luis E; Georgeson, Lucien; Grace, Delia; Graham, Hilary; Gunther, Samuel H; Hartinger, Stella; He, Kehan; Heaviside, Clare; Hess, Jeremy; Hsu, Shih-Che; Jankin, Slava; Jimenez, Marcia P; Kelman, Ilan; Kiesewetter, Gregor; Kinney, Patrick L; Kjellstrom, Tord; Kniveton, Dominic; Lee, Jason K W; Lemke, Bruno; Liu, Yang; Liu, Zhao; Lott, Melissa; Lowe, Rachel; Martinez-Urtaza, Jaime; Maslin, Mark; McAllister, Lucy; McMichael, Celia; Mi, Zhifu; Milner, James; Minor, Kelton; Mohajeri, Nahid; Moradi-Lakeh, Maziar; Morrissey, Karyn; Munzert, Simon; Murray, Kris A; Neville, Tara; Nilsson, Maria; Obradovich, Nick; Sewe, Maquins Odhiambo; Oreszczyn, Tadj; Otto, Matthias; Owfi, Fereidoon; Pearman, Olivia; Pencheon, David; Rabbaniha, Mahnaz; Robinson, Elizabeth; Rocklöv, Joacim; Salas, Renee N; Semenza, Jan C; Sherman, Jodi; Shi, Liuhua; Springmann, Marco; Tabatabaei, Meisam; Taylor, Jonathon; Trinanes, Joaquin; Shumake-Guillemot, Joy; Vu, Bryan; Wagner, Fabian; Wilkinson, Paul; Winning, Matthew; Yglesias, Marisol; Zhang, Shihui; Gong, Peng; Montgomery, Hugh; Costello, Anthony; Hamilton, Ian. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future (PDF) . The Lancet. October 2021, 398 (10311): 1619–1662 [2023-05-27 ] . PMID 34687662 . S2CID 239046862 . doi:10.1016/S0140-6736(21)01787-6 . hdl:10278/3746207 . (原始内容存档 (PDF) 于2023-04-07).
Watts, Nick; Amann, Markus; Arnell, Nigel; Ayeb-Karlsson, Sonja; Belesova, Kristine; Boykoff, Maxwell; Byass, Peter; Cai, Wenjia; Campbell-Lendrum, Diarmid; Capstick, Stuart; Chambers, Jonathan. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate (PDF) . The Lancet. 2019-11-16, 394 (10211): 1836–1878 [2023-05-27 ] . PMID 31733928 . S2CID 207976337 . doi:10.1016/S0140-6736(19)32596-6 . (原始内容存档 (PDF) 于2023-03-09).
Costello, Anthony; Abbas, Mustafa; Allen, Adriana; Ball, Sarah; Bell, Sarah; Bellamy, Richard; Friel, Sharon; Groce, Nora; Johnson, Anne; Kett, Maria; Lee, Maria. Managing the health effects of climate change . The Lancet. 2009, 373 (9676): 1693–1733 [2023-05-27 ] . PMID 19447250 . S2CID 205954939 . doi:10.1016/S0140-6736(09)60935-1 . (原始内容存档 于2023-03-30) (英语) .
IPCC, 2019: Summary for Policymakers (页面存档备份 ,存于互联网档案馆 ). In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (页面存档备份 ,存于互联网档案馆 ) [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. https://doi.org/10.1017/9781009157988.001
Pecl, Gretta T.; Araújo, Miguel B.; Bell, Johann D.; Blanchard, Julia; Bonebrake, Timothy C.; Chen, I-Ching; Clark, Timothy D.; Colwell, Robert K.; Danielsen, Finn; Evengård, Birgitta; Falconi, Lorena; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A.; Griffis, Roger B.; Hobday, Alistair J.; Janion-Scheepers, Charlene; Jarzyna, Marta A.; Jennings, Sarah; Lenoir, Jonathan; Linnetved, Hlif I.; Martin, Victoria Y.; McCormack, Phillipa C.; McDonald, Jan; Mitchell, Nicola J.; Mustonen, Tero; Pandolfi, John M.; Pettorelli, Nathalie; Popova, Ekaterina; Robinson, Sharon A.; Scheffers, Brett R.; Shaw, Justine D.; Sorte, Cascade J. B.; Strugnell, Jan M.; Sunday, Jennifer M.; Tuanmu, Mao-Ning; Vergés, Adriana; Villanueva, Cecilia; Wernberg, Thomas; Wapstra, Erik; Williams, Stephen E. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017-03-31, 355 (6332): eaai9214. PMID 28360268 . S2CID 206653576 . doi:10.1126/science.aai9214 . hdl:10019.1/120851 .
Romanello, Marina; McGushin, Alice; Di Napoli, Claudia; Drummond, Paul; Hughes, Nick; Jamart, Louis; Kennard, Harry; Lampard, Pete; Solano Rodriguez, Baltazar; Arnell, Nigel; Ayeb-Karlsson, Sonja; Belesova, Kristine; Cai, Wenjia; Campbell-Lendrum, Diarmid; Capstick, Stuart; Chambers, Jonathan; Chu, Lingzhi; Ciampi, Luisa; Dalin, Carole; Dasandi, Niheer; Dasgupta, Shouro; Davies, Michael; Dominguez-Salas, Paula; Dubrow, Robert; Ebi, Kristie L; Eckelman, Matthew; Ekins, Paul; Escobar, Luis E; Georgeson, Lucien; Grace, Delia; Graham, Hilary; Gunther, Samuel H; Hartinger, Stella; He, Kehan; Heaviside, Clare; Hess, Jeremy; Hsu, Shih-Che; Jankin, Slava; Jimenez, Marcia P; Kelman, Ilan; et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future (PDF) . The Lancet. October 2021, 398 (10311): 1619–1662 [2023-05-27 ] . PMID 34687662 . S2CID 239046862 . doi:10.1016/S0140-6736(21)01787-6 . hdl:10278/3746207 . (原始内容存档 (PDF) 于2023-04-07).
Ojala, Maria; Cunsolo, Ashlee; Ogunbode, Charles A.; Middleton, Jacqueline. Anxiety, Worry, and Grief in a Time of Environmental and Climate Crisis: A Narrative Review. Annual Review of Environment and Resources. 2021-10-18, 46 (1): 35–58. S2CID 236307729 . doi:10.1146/annurev-environ-012220-022716 .
Morca, Camilo; Counsell, Chelsie W.W.; Bielecki, Coral R.; Louis, Leo V, Twenty-Seven Ways a Heat Wave Can Kill You: Deadly Heat in the Era of Climate Change, Circulation: Cardiovascular Quality and Outcomes , November 2017, 10 (11), PMID 29122837 , doi:10.1161/CIRCOUTCOMES.117.004233
Koppe, Christina; Sari Kovats; Gerd Jendritzky; Bettina Menne. Heat-waves: risks and responses . Health and Global Environmental Change Series. 2004, 2 [2023-05-27 ] . (原始内容存档 于2023-03-22).
IPCC, 2022: Annex II: Glossary (页面存档备份 ,存于互联网档案馆 ) [Möller, V., R. van Diemen, J.B.R. Matthews, C. Méndez, S. Semenov, J.S. Fuglestvedt, A. Reisinger (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (页面存档备份 ,存于互联网档案馆 ) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2897–2930, doi:10.1017/9781009325844.029.
Robine, Jean-Marie; Cheung, Siu Lan K; Le Roy, Sophie; Van Oyen, Herman; Griffiths, Clare; Michel, Jean-Pierre; Herrmann, François Richard. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies. 2008, 331 (2): 171–8. PMID 18241810 . doi:10.1016/j.crvi.2007.12.001 .
Seneviratne, Sonia I.; Zhang, Xuebin; Adnan, M.; Badi, W.; et al. Chapter 11: Weather and climate extreme events in a changing climate (PDF) . Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press. 2021: 1517 [2023-05-27 ] . (原始内容存档 (PDF) 于2022-05-29).
Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D. Jiang, A. Khan, W. Pokam Mba, D. Rosenfeld, J. Tierney, and O. Zolina, 2021: Chapter 8: Water Cycle Changes (页面存档备份 ,存于互联网档案馆 ). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (页面存档备份 ,存于互联网档案馆 ) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1055–1210, doi:10.1017/9781009157896.010.
Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. Forest Ecology and Management. February 2010, 259 (4): 685–697. doi:10.1016/j.foreco.2009.09.002 .
Wingert, Charles J.; Cochlan, William P. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae. July 2021, 107 : 102030. PMID 34456015 . S2CID 237841102 . doi:10.1016/j.hal.2021.102030 .
Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W.D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, H. Liao, N. Unger, and P. Zanis, 2021: Chapter 6: Short-Lived Climate Forcers (页面存档备份 ,存于互联网档案馆 ). In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (页面存档备份 ,存于互联网档案馆 ) [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 817–922, doi:10.1017/9781009157896.008.
Sharma, Sumit; Sharma, Prateek; Khare, Mukesh; Kwatra, Swati. Statistical behavior of ozone in urban environment. Sustainable Environment Research. May 2016, 26 (3): 142–148. doi:10.1016/j.serj.2016.04.006 .
Bhaumik, Soumyadeep; Beri, Deepti; Jagnoor, Jagnoor. The impact of climate change on the burden of snakebite: Evidence synthesis and implications for primary healthcare. Journal of Family Medicine and Primary Care. October 2022, 11 (10): 6147–6158. PMID 36618235 . S2CID 253452433 . doi:10.4103/jfmpc.jfmpc_677_22 .
Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products (页面存档备份 ,存于互联网档案馆 ). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (页面存档备份 ,存于互联网档案馆 ) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Garnett, Tara; Godfray, H Charles J; Gollin, Douglas; Rayner, Mike; Ballon, Paola; Scarborough, Peter. Global and regional health effects of future food production under climate change: a modelling study . The Lancet. 2016, 387 (10031): 1937–1946 [2023-05-27 ] . PMID 26947322 . S2CID 41851492 . doi:10.1016/S0140-6736(15)01156-3 . (原始内容存档 于2023-04-09) (英语) .
Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, et al. Chapter 5: Food Security (PDF) . Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, et al (编). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems . 2019 [2023-05-27 ] . (原始内容存档 于2022-06-21).
Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products (页面存档备份 ,存于互联网档案馆 ). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (页面存档备份 ,存于互联网档案馆 ) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
Caretta, Martina Angela; Mukherji, Aditi; et al. Chapter 4: Water (PDF) . Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change . . FAQ4.1 [2023-05-27 ] . (原始内容存档 (PDF) 于2022-06-25).
Hamilton, Ian; Kennard, Harry; McGushin, Alice; Höglund-Isaksson, Lena; Kiesewetter, Gregor; Lott, Melissa; Milner, James; Purohit, Pallav; Rafaj, Peter; Sharma, Rohit; Springmann, Marco. The public health implications of the Paris Agreement: a modelling study . The Lancet Planetary Health. 2021, 5 (2): e74–e83. PMC 7887663 . PMID 33581069 . doi:10.1016/S2542-5196(20)30249-7 (英语) .
本条目含有的部分文本,以CC BY 4.0 授权条款释出。
Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M. Climate Endgame: Exploring catastrophic climate change scenarios . Proceedings of the National Academy of Sciences. 2022, 119 (34): e2108146119. Bibcode:2022PNAS..11908146K . ISSN 0027-8424 . PMC 9407216 . PMID 35914185 . doi:10.1073/pnas.2108146119 (英语) .
Hales, Simon; Kovats, Sari; Lloyd, Simon; Campbell-Lendrum, Diarmid (编). Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Switzerland: World Health Organization. 2014. ISBN 978-92-4-150769-1 . hdl:10665/134014 . [页码请求 ]
Crimmins, A.; Balbus, J.; Gamble, J.L.; Beard, C.B.; Bell, J.E.; Dodgen, D.; Eisen, R.J.; Fann, N.; Hawkins, M.D.; Herring, S.C.; Jantarasami, L.; Mills, D.M.; Saha, S.; Sarofim, M.C.; Trtanj, J.; Ziska, L. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment . 2016 [2023-05-27 ] . ISBN 978-0-16-093241-0 . doi:10.7930/J0R49NQX . (原始内容存档 于2022-11-22).
Kent E. Pinkerton , William N. Rom (编). 1,2,6,12,13. Climate Change and Global Public Health. Humana . 2021. ISBN 978-3030547455 .