Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвлённую цепь из чётного числа атомов углерода (от 4 до 28, включая карбоксильный) и могут быть как насыщенными, так и ненасыщенными[1].

В более широком смысле этот термин иногда используется, чтобы охватить все ациклические алифатические карбоновые кислоты, а иногда этим термином охватывают и карбоновые кислоты с различными циклическими радикалами.

Общие сведения

По характеру связи атомов углерода в цепочке жирные кислоты делятся на насыщенные и ненасыщенные. Насыщенные (предельные) содержат только одинарные связи между атомами углерода. Мононенасыщенные (моноеновые) содержат двойную или, что бывает редко, тройную связь. Полиненасыщенные (полиеновые) жирные кислоты имеют две и более двойные или тройные связи. Двойные связи в природных полиненасыщенных жирных кислотах — изолированные (несопряженные). Как правило, связи имеют цис-конфигурацию, что придает таким молекулам дополнительную жесткость.

Жирные кислоты различаются по количеству углеродных атомов в цепи, а также, в случае ненасыщенных кислот, по положению, конфигурации и количеству двойных и тройных связей.

Жирные кислоты можно условно поделить на низшие (до семи атомов углерода), средние (восемь — двенадцать атомов углерода) и высшие (более двенадцати атомов углерода). Карбоновые кислоты могут содержать циклические группы: циклопропановые, циклопропеновые, циклопентиловые, циклопентениловые, циклогексиловые, циклогексениловые, фурановые, иногда их относят тоже к жирным кислотам[2].

Ациклические карбоновые кислоты, начиная с масляной кислоты, считаются жирными. Жирные кислоты, полученные непосредственно из животных жиров, имеют в основном восемь и больше атомов углерода (каприловая кислота). Число атомов углерода в натуральных жирных кислотах в основном чётное, что обусловлено их биосинтезом с участием Ацетил-КоА.

Большая группа жирных кислот (более 400 различных структур, хотя только 10—12 распространены) находятся в растительных маслах семян. Наблюдается высокое процентное содержание редких жирных кислот в семенах определённых семейств растений[3]. В растительных восках также наблюдается содержание различных жирных кислот, в том числе высших: в карнаубском воске из листьев бразильской пальмы карнауба (Copernicia cerifera) и в оурикорийском воске из листьев бразильской пальмы оурикури (Syagrus coronata) содержатся в основном чётные кислоты, имеющие 14—34 атома углерода, канделильский воск из кустарника канделилла (Euphorbia cerifera) из пустыни Чиуауа содержит в основном чётные кислоты, имеющие 10—34 атома углерода, сахарно-тростниковый воск из Saccharum officinarum содержит кислоты, имеющие 12 и 14—36 атомов углерода, пчелиный воск содержит кислоты, имеющие 12, 14 и 16—36 атомов углерода[4].

Под незаменимыми понимаются те жирные кислоты, которые не могут быть синтезированы в организме. Для человека незаменимыми являются кислоты, содержащие по крайней мере одну двойную связь на расстоянии более девяти атомов углерода от карбоксильной группы.

Биохимия

Расщепление

Жирные кислоты в виде триглицеридов накапливаются в жировых тканях. При потребности под действием веществ, таких как адреналин, норадреналин, глюкагон и адренокортикотропин запускается процесс липолиза. Освобождённые жирные кислоты выделяются в кровоток, по которому попадают к нуждающимся в энергии клеткам, где сперва при участии АТФ происходит связывание (активация) с коферментом A (КоА). При этом АТФ гидролизуется до АМФ с освобождением двух молекул неорганического фосфата (Pi):

R-COOH + КоА-SH + АТФ → R-CO-S-КоА + 2Pi + H+ + АМФ

Синтез

В растительном и животном организме жирные кислоты образуются как продукты углеводного и жирового обмена. Синтез жирных кислот осуществляется в противоположность расщеплению в цитозоле, у растений — в пластидах[5]. Реакции, катализируемые синтазами жирных кислот, сходны у всех живых организмов, однако у животных, грибов и некоторых бактерий ферменты работают в составе единого мультиэнзимного комплекса (FAS I), тогда как у остальных бактерий и растений система состоит из отдельных монофункциональных ферментов (FAS II).

Циркуляция

Пищеварение и всасывание

У млекопитающих животных (лат. Mammalia) коротко- и среднецепочечные жирные кислоты всасываются напрямую в кровь через капилляры кишечного тракта и проходят через воротную вену, как и другие питательные вещества. Длинноцепочечные (с количеством атомов углерода от 16 и выше) поглощаются клетками стенок ворсинок (лат. villi intestinales) в тонкой кишке (сегмент кишечника) и заново превращаются в триглицериды. Триглицериды покрываются холестерином и белками с образованием хиломикрона. Внутри ворсинки хиломикрон попадает в лимфатические сосуды, так называемый млечный капилляр, где поглощается большими лимфатическими сосудами. Он транспортируется по лимфатической системе вплоть до места, близкого к сердцу, где кровеносные артерии и вены наибольшие. Грудной проток освобождает хиломикрон в центральный венозный кровоток. Таким образом триглицериды транспортируются в места, где в них нуждаются[6].

Виды существования в организме

Жирные кислоты существуют в различных формах на различных стадиях циркуляции в крови. Они поглощаются в кишечнике, образуя хиломикроны, но в то же время они существуют в виде липопротеинов очень низкой плотности или липопротеинов низкой плотности после превращений в печени. При выделении из адипоцитов жирные кислоты поступают в свободном виде в кровь.

Кислотность

Кислоты с коротким углеводородным хвостом, такие как муравьиная и уксусная кислоты, полностью смешиваются с водой и диссоциируют с образованием достаточно кислых растворов (pKa 3.77 и 4.76, соответственно). Жирные кислоты с более длинным хвостом незначительно отличаются по кислотности. Например, нонановая кислота имеет pKa 4.96. Однако с увеличением длины хвоста растворимость жирных кислот в воде уменьшается очень быстро, в результате чего эти кислоты мало изменяют pH раствора. Значение величин pKa для данных кислот приобретает значение лишь в реакциях, в которые эти кислоты способны вступить. Кислоты, нерастворимые в воде, могут быть растворены в тёплом этаноле, и оттитрованы раствором гидроксида натрия, используя фенолфталеин, в качестве индикатора до бледно-розового цвета. Такой анализ позволяет определить содержание жирных кислот в порции триглицеридов после гидролиза.

Реакции жирных кислот

Жирные кислоты реагируют так же, как и другие карбоновые кислоты, что подразумевает этерификацию и кислотные реакции. Восстановление жирных кислот приводит к жирным спиртам. Ненасыщенные жирные кислоты также могут вступать в реакции присоединения; наиболее характерно гидрирование, которое используется для превращения растительных жиров в маргарин. В результате частичного гидрирования ненасыщенных жирных кислот цис-изомеры, характерные для природных жиров, могут перейти в транс-форму. В реакции Варрентраппа[англ.] ненасыщенные жиры могут быть расщеплены в расплавленной щёлочи. Эта реакция имеет значение для определения структуры ненасыщенных жирных кислот.

Автоокисление и прогоркание

Жирные кислоты при комнатной температуре подвергаются автоокислению и прогорканию. При этом они разлагаются на углеводороды, кетоны, альдегиды и небольшое количество эпоксидов и спиртов. Тяжёлые металлы, содержащиеся в небольших количествах в жирах и маслах, ускоряют автоокисление. Чтобы избежать этого, жиры и масла часто обрабатываются хелатирующими агентами, такими как лимонная кислота.

Применение

Натриевые и калиевые соли высших жирных кислот являются эффективными поверхностно-активными веществами и используются в качестве мыл. В пищевой промышленности жирные кислоты зарегистрированы в качестве пищевой добавки E570 как стабилизатор пены, глазирователь и пеногаситель[7].

Разветвлённые жирные кислоты

Разветвлённые карбоновые кислоты липидов обычно не относятся к собственно жирным кислотам, но рассматриваются как их метилированные производные. Метилированные по предпоследнему атому углерода (изо-жирные кислоты) и по третьему от конца цепи (антеизо-жирные кислоты) входят в качестве минорных компонент в состав липидов бактерий и животных.

Монометил-разветвлённые жирные кислоты

Монометил-разветвлённые ненасыщенные жирные кислоты были обнаружены в фосфолипидах морских губок, например, в морской губке Callyspongia fallax обнаружены мононенасыщенные 2-метокси-13-метил-6-тетрадеценовая кислота

СН3-СН(СН3)-(СН2)5-СН=СН-(СН2)3-С(ОСН3)-СООН,

2-метокси-6-тетрадеценовая кислота

СН3-(СН2)6-СН=СН-(СН2)3-С(ОСН3)-СООН,

2-метокси-6-пентадеценовая кислота

СН3-(СН2)7-СН=СН-(СН2)3-С(ОСН3)-СООН

и 2-метокси-13-метил-6-тетрадеценовая кислота

СН3-СН(СН3)-(СН2)5-СН=СН-(СН2)3-С(ОСН3)-СООН,

а также полиненасыщенная 24-метил-5,9-пентакозадиеновая кислота[8].

СН3-СН(СН3)-(СН2)13-СН=СН-(СН2)2-СН=СН-(СН2)3-СООН.

В липидах рыбы-солнце (Mola mola) была обнаружена мононенасыщенная 7-метил-7-гексадеценовая кислота

СН3-(СН2)7-СН=С(СН3)-(СН2)5-СООН,

а 7-метил-6-гексадеценовая кислота

СН3-(СН2)8-С(СН3)=СН-(СН2)4-СООН

и 7-метил-8-гексадеценовая кислота

СН3-(СН2)6-СН=СН-СН(СН3)-(СН2)5-СООН

нашлись также в губках[9]. Разветвлённые карбоновые кислоты также входят в состав эфирных масел некоторых растений: так, например, в эфирном масле валерианы содержится монометил-насыщенная изовалериановая кислота (3-метилбутановая кислота) СН3-CH(СН3)-СН2-СООН или Thumb.

Мультиметил-разветвлённые жирные кислоты

Мультиметил-разветвлённые кислоты распространены главным образом в бактериях. 13,13-диметил-тетрадекановая кислота

СН3-С(СН3)2-(СН2)11-СООН

была найдена в микроорганизмах, морских водорослях, растениях и морских беспозвоночных. К этим кислотам относятся фитановая кислота (3,7,11,15-тетраметилгексадекановая кислота)

СН3-СН(СН3)-(СН2)3-СН(СН3)-(СН2)3- СН(СН3)-(СН2)3- С(СН3)-СН2-СООН

и пристановая кислота (2,6,10,14-тетраметилпентадекановая кислота)

СН3-СН(СН3)-(СН2)3-СН(СН3)-(СН2)3- СН(СН3)-(СН2)3- С(СН3)-СООН,

конечный продукт распада хлорофилла. Пристановая кислота была обнаружена во многих природных источниках, в губках, моллюсках, молочных жирах, запасных липидах животных и в нефти. Это соединение является продуктом α-окисления фитановой кислоты[10].

Метокси-разветвлённые жирные кислоты

В фосфолипидах губки Amphimedon complanata были обнаружены метокси-разветвлённые насыщенные жирные кислоты: 2-метокси-13-метилтетрадекановая кислота

СН3-СН(СН3)-(СН2)10-С(ОСН3)-СООН,

2-метокси-14-метилпентадекановая кислота

СН3-СН(СН3)-(СН2)11-С(ОСН3)-СООН

и 2-метокси-13-метилпентадекановая кислота[11].

СН3-СН2-СН(СН3)-(СН2)10-С(ОСН3)-СООН.

Миколовые насыщенные жирные кислоты

Особую группу жирных кислот с разветвлённой структурой составляют насыщенные или мононенасыщенные кислоты (более 500 соединений)[12], содержащиеся в оболочках некоторых бактерий. Эти бактерии широко распространены в природе: они встречаются в почве, воде, в организме теплокровных и холоднокровных животных. Среди этих бактерий есть сапрофитные, условно-патогенные (потенциально патогенные) и патогенные виды. Кислоты синтезируемые этими бактериями различных групп и называются миколовыми кислотами. Миколовые кислоты — это разветвлённые 3-гидроксикислоты общего вида R1-СН(ОН)-CH(R2)-СООН, где R1 — может быть гидроксильной, метоксильной, кето или карбоксильной группой, такие кислоты называются дигидроксимиколовые, метоксимиколовые, кетомиколовые, карбоксимиколовые, соответственно, а также эпоксимиколовые, если в кислоте есть эпоксильное кольцо; R2 — алкильная боковая цепь длиной до С24[13]. Примерами простых насыщенных миколовых кислот могут служить 3-гидрокси-2-этил-гексановая кислота

СН3-(СН2)2-СН(ОН)-СН(С2Н 5)-СООН,

3-гидрокси-2-бутил-октановая кислота,

Thumb

3-гидрокси-2-гексил-декановая кислота

СН3-(СН2)6-СН(ОН)-СН(С6Н 13)-СООН,

3-гидрокси-2-гептил-ундекановая кислота

СН3-(СН2)7-СН(ОН)-СН(С7Н 15)-СООН,

3-гидрокси-2-тетрадецил-октадекановая кислота ,

СН3-(СН2)14-СН(ОН)-СН(С14Н 29)-СООН,

3-гидрокси-2-гексадецил-эйкозановая кислота

СН3-(СН2)16-СН(ОН)-СН(С16Н 31)-СООН.

В миколовых кислотах бактерий порядка Актиномицеты, например у коринебактерий рода Corynebacterium (возбудителей дифтерии) 32-36 атомов углерода, у нокардий рода Nocardia (возбудителей нокардиоза) — 48-58, а у микобактерий рода Mycobacterium (возбудителей туберкулёзов человека и животных) - 78-95[14]. Миколовые кислоты являются главным компонентом защитной оболочки бактерий (Mycobacterium tuberculosis), которые вызывают туберкулёз человека. Именно присутствие миколовых кислот в оболочке клетки бактерии определяют химическую инертность (в.т.ч. спирто-, щелоче- и кислотоустойчивость), стабильность, механическую прочность, гидрофобность и низкую проницаемость клеточной стенки для лекарств[15].

Циклосодержащие жирные кислоты

Природные жирные кислоты могут содержать циклические элементы. Это могут быть циклопропановые и циклопропеновые кольца, циклопентиловые и циклопентениловые кольца, циклогексиловые и циклогексеновые кольца, а также фурановые кольца. При этом кислоты могут быть как насыщенными, так и ненасыщенными.

Циклопропановые насыщенные жирные кислоты

Некоторые жирные кислоты содержат в составе цепи кольцо циклопропана (такие кислоты находят в липидах бактерий) или циклопропеновое кольцо (в растительных маслах).

Среди насыщенных циклопропановых кислот первой была выделена лактобацилловая, или фитомоновая (11,12-метилен-октадекановая) кислота, получившая своё тривиальное название по грамотрицательным бактериям Lactobacillus arabinosus, в которых нашёл её К. Хофманн в 1950 году.

Thumb
Лактобацилловая кислота

Позже изомер этой кислоты (9,10-метилен-октадекановую кислоту) нашли в семенах личи китайского (Litchi chinensis) из семейства Сапиндовые.

Другая циклопропановая жирная кислота (9,10-метилен-гексадекановая) присутствует в фосфолипидах митохондрий бычьих сердца и печени, её количество в бычьем сердце составляет около 4 % всех жирных кислот.

Thumb
9,10-метилен-гексадекановая кислота

Кроме того, 17-метил-цис-9,10-метилен-октадекановая кислота обнаружена в паразитическом простейшем Herpetomonas megaseliae. Циклопропановые кольца встречаются также в боковых цепях некоторых миколовых кислот.

Thumb
17-метил-цис-9,10-метилен-октадекановая кислота

Циклопропановые ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты с пропановым кольцом встречаются в природе чаще, чем насыщенные, они могут содержать одну, две и более двойных связей. В цианобактерии Lyngbya majuscula найдена маюскуловая (4,5 метилен-11-бром-8,10 тетрадекадиеновая) кислота, 9,10 метилен-5-гексадеценовая и 11,12-метилен-5-октадеценовая кислоты были выделены из клеточной слизи Polysphondylium pallidum из группы слизевиков.

Thumb
Маюскуловая кислота

Две кислоты были выделены Т. Немото (Nemoto T.) в 1997 году из австралийской губки рода Amphimedon, эти кислоты названы амфимиковыми: 10,11-метилен-5,9-октакозадиеновая и 10,11-метилен-5,9,21-октакозатриеновая кислоты.

Циклопропеновые жирные кислоты

Циклопропеновые жирные кислоты содержатся в растительных маслах растений, принадлежащих к семействам Стеркулиевые, Гнетовые, Бомбаксовые, Мальвовые , Липовые, Сапиндовые. 9,10-метилен-9-октадеценовая кислота была обнаружена Нанном (Nunn) в 1952 году в масле стеркулии вонючей (Sterculia foetida) из семейства Мальвовые, поэтому получила тривиальное название стеркуловая.

Thumb
Стеркуловая кислота

Гомолог этой кислоты был открыт МакФерланом (Mac Farlane) в 1957 году в масле из семян мальвы, поэтому кислоту назвали мальвовой (8,9-метилен-8-гептадеценовой) кислотой.

Thumb
Мальвовая кислота

В процессе очистки масел, содержащих стеркуловую кислоту, последняя легко присоединяет гидроксил, превращаясь в 2-гидрокси-9,10-метилен-9-октадеценовую кислоту.

Полициклобутановые (ладдерановые) жирные кислоты

Жирные кислоты с циклобутановыми кольцами были обнаружены в 2002 году в качестве компонентов мембранных липидов анаэробных бактерий из рода Candidatus порядка Planctomycetes, окисляющих аммоний[16].

Эти жирные кислоты могут содержать до пяти линейно-слитых фрагментов циклобутана как у пентациклоанаммоксовой, или 8-[5]-ладдеран-октановой кислоты. Иногда к циклобутановым кольцам добавляются одно или два кольца циклогексана.

Thumb
Пентациклоанаммоксовая кислота
Thumb
8-циклогекса-[3]-циклотетра-ладдеран-октановая кислота
Thumb
8-циклогекса-циклотетра-циклогекса-ладдеран-октановая кислота

Циклопентиловые жирные кислоты

Простейшими циклопентиловыми кислотами являются 2-циклопентил-уксусная кислота и 3-циклопентил-пропионовая кислота.

Thumb
2-циклопентил-уксусная кислота
Thumb
3-циклопентил-пропионовая кислота

Природные тубероновая, или (1R,2S)-2-[(Z)-5-гидрокси-2-пентинил]-3-оксоциклопентан-1-уксусная кислота, содержащаяся в картофеле и получившая своё тривиальное название по его видовому имени (Solánum tuberósum), жасминовая, или жасмоновая (1R,2R)-оксо-2-(2Z)-2-пентен-1-ил-циклопентан-уксусная) кислота, содержащаяся в жасмине,

Thumb
Тубероновая кислота
Thumb
Жасмоновая кислота

а также кукурбиновая (3-гидрокси- 2-[2-пентенил]-циклопентан-1-уксусная) кислота, содержащаяся в тыкве (род Cucurbita семейства Тыквенные) и названная её родовым именем, являются ингибиторами роста растений, активно участвующими в их метаболизме.

Thumb
Кукурбиновая кислота

Среди сложных циклопентиловых кислот можно выделить простановую кислоту, которая является основой простагландинов — липидных физиологически активных веществ.

Thumb
Простановая кислота

К рассматриваемой группе кислот относится также многочисленная группа нафтеновых кислот, содержащихся в нефти. Эти кислоты включают представляют собой одноосновные карбоновые кислоты с 5- и 6-членными моно-, би- и трициклами, как, например, 3-(3-этил-циклопентил)-пропановая кислота,

Thumb
3-(3-этил-циклопентил)-пропановая кислота

Близко к нафтеновым кислотам стоят своеобразное семейство природных соединений, называемое ARN-кислотами, содержащие от 4 до 8 пентановых циклов, эти соединения создают значительные трудности при добыче и транспортировке нефти.[17].

Thumb
Пример ARN-нафтеневой кислоты

Циклопентениловые жирные кислоты

Первые циклопентениловые кислоты были открыты Р. Л. Шринером (Shriner R.L.) в 1925 году в масле семян растений рода Гиднокарпус, или Чальмугра (Chaulmoogra) из семейства Ахариевые. Это были ненасыщенные хаульмугровая, или 13-[(1R)-2-циклопентен-1-ил]-тридекановая кислота и гиднокарповая, или 11-(2-циклопентен-1-ил)-ундекановая кислота, содержание которых в масле семян составляет от 9 до 75 %.

Thumb
Хаульмугровая кислота
Thumb
Гиднокарповая кислота

В семенах этих растений содержатся и другие жирные кислоты с цепью различной длины и двойной связью в разных положениях, например, горликовая, или 13R-(2-циклопентен-1-ил)-6Z-тридеценовая кислота, которая содержится в семенах упомянутых выше растений в количестве 1,4-25 %.

Thumb
Горликовая кислота

Биосинтетический предшественник жасмоновой кислоты 12-оксо-фитодиеновая (4-оксо-5R-(2Z)-2-пентил-2-циклопентен-1S-октановая) кислота активно участвует в метаболизме растений.

Thumb
12-оксо-фитодиеновая кислота

Кислоты с фурановыми циклами

Первоначально жирные кислоты с фурановыми циклами были найдены среди растительных липидов. Например, в гевеи бразильской была найдена 10,13-эпокси-11,12-диметил-октадека-10,12-диеновая кислота., у дерева эксокарп кипарисообразный (Exocarpus cupressiformisа) с острова Тасмания обнаружили 9,10-эпокси-10,11-диН-нанодека-9,11-диеновую кислоту. Однако позже фурановые жирные кислоты были найдены в тканях рыб и были обнаружены также в человеческой плазме и эритроцитах. По крайней мере, четырнадцать различных фурановых жирных кислот в настоящее время обнаружены в липидах рыб, но наиболее распространенной является 12,15-эпокси-13,14-диметил-эйкоза-12,14-диеновая кислота и её гомологи, меньше распространены монометиловые кислоты, такие как, например, 12,15-эпокси-13-метил-эйкоза-12,14-диеновая кислота[18].

Thumb
Фурановые кислоты

Из человеческой крови выделено несколько короткоцепочечных фурановых двухосновных жирных кислот, которые называются урофурановыми кислотами. Некоторые ученые предполагают, что эти кислоты являются метаболитами кислот с более длинной цепью. Когда нарушается функция почек, в организме накапливается 3-карбокси-4-метил-5-пропил-2-фуранопропановая кислота, которая является уремическим токсином[19].

Thumb
Урофурановые кислоты

Основные жирные кислоты

Насыщенные жирные кислоты

Общая формула: CnH2n+1COOH или CH3—(CH2)n—COOH

Подробнее Тривиальное название, Систематическое название (IUPAC) ...
Тривиальное названиеСистематическое название (IUPAC)Брутто формулаРациональная полуразвернутая формулаНахождениеТпл, °CpKa
Пропионовая кислотаПропановая кислотаC2H5COOHCH3(CH2)COOHНефть−21 
Масляная кислотаБутановая кислотаC3H7COOHCH3(CH2)2COOHСливочное масло, древесный уксус−8

4,82

Валериановая кислотаПентановая кислотаC4H9COOHCH3(CH2)3COOHВалериана лекарственная−34,5 
Капроновая кислотаГексановая кислотаC5H11COOHCH3(CH2)4COOHНефть, кокосовое масло (0,5 %)−44,85
Энантовая кислотаГептановая кислотаC6H13COOHCH3(CH2)5COOHПрогорклое сливочное масло−7,5
Каприловая кислотаОктановая кислотаC7H15COOHCH3(CH2)6COOHКокосовое масло (5 %), сивушное масло17 4,89
Пеларгоновая кислотаНонановая кислотаC8H17COOHCH3(CH2)7COOHПеларгония (лат. Pelargonium) — род растений из семейства гераниевых12,5 4.96
Каприновая кислотаДекановая кислотаC9H19COOHCH3(CH2)8COOHКокосовое масло (5 %)31 
Ундециловая кислотаУндекановая кислотаC10H21COOHCH3(CH2)9COOHКокосовое масло (в малом количестве)28,6 
Лауриновая кислотаДодекановая кислотаС11Н23СООНCH3(CH2)10COOHКокосовое масло (50 %), пальмовое масло (0,2 %), масло укууба (Virola sebifera) (15—17 %), масло пальмы мурумуру (Astrocaryum murumuru) (47 %),43,2 
Тридециловая кислотаТридекановая кислотаС12Н25СООНCH3(CH2)11COOHЦианобактерии (0,24-0,64 %)[20], масло листьев руты (0,07 %), масло карамболы (0,3 %)[21]41 
Миристиновая кислотаТетрадекановая кислотаС13Н27СООНCH3(CH2)12COOHПлоды мускатного ореха (Myristica), кокосовое масло (20 %), пальмовое масло (1,1 %), масло укууба (Virola sebifera) (72—73 %), масло пальмы мурумуру (Astrocaryum murumuru) (36,9 %), масло пальмы тукума (Astrocaryum tucuma) (21—26 %)53,9 
Пентадециловая кислотаПентадекановая кислотаС14Н29СООНCH3(CH2)13COOHСливочное масло (1,2 %)[22] бараний жир[23]52 
Пальмитиновая кислотаГексадекановая кислотаС15Н31СООНCH3(CH2)14COOHКокосовое масло (9 %), пальмовое масло (44 %), оливковое масло (7,5—20 %), масло понгамии перистой (3,7—7,9 %), масло укууба (Virola sebifera) (4,4—5 %), масло пальмы мурумуру (Astrocaryum murumuru) (6 %), масло пекуи (48 %), масло кофе (34 %), масло баобаба (25 %), хлопковое масло (23 %)62,8 
Маргариновая кислотаГептадекановая кислотаС16Н33СООНCH3(CH2)15COOHГорчичное масло (до 2,1 %), в малых количествах в бараньем жире (1,2 %), сливочном масле (1,2 %), оливковом масле (0,2 %), подсолнечном масле (0,2 %), арахисовом масле (0,2 %)61,3 
Стеариновая кислотаОктадекановая кислотаС17Н35СООНCH3(CH2)16COOHКокосовое масло (3 %), пальмовое масло (4,6 %), оливковое масло (0,5—5 %), масло понгамии перистой (2,4-8,9 %), масло пальмы мурумуру (Astrocaryum murumuru) (2,6 %), масло кокум (Garcinia indica) (50—60 %), масло иллипа (Shorea Stenoptera) (42—48 %), масло манго (39 %), масло ши (30—45 %)69,4 
Нонадециловая кислотаНонадекановая кислотаС18Н37СООНCH3(CH2)17COOHмасло зелёных частей укропа (10 %)[24], красная водоросль (Hypnea musciformis)[25], бактерия (Streptomyces scabiei subsp. chosunensis М0137)[26]68,2 
Арахиновая кислотаЭйкозановая кислотаС19Н39СООНCH3(CH2)18COOHАрахисовое масло, масло из плодов рамбутана, масло Купуасу (11 %), масло понгамии перистой (2,2—4,7 %), масло авелланского ореха (6,3 %)76,2 
Генэйкоциловая кислотаГенэйкозановая кислотаС20Н41СООНCH3(CH2)19COOHМасло семян дерева Азадирахта, масло семян дерева мукуна жгучая, грибы опята75,2 
Бегеновая кислотаДокозановая кислотаС21Н43СООНCH3(CH2)20COOHМасло семян дерева моринга масличная (8 %), масло понгамии перистой (4,7—5,3 %), горчичное масло (2—3 %), масло авелланского ореха (1,9 %)80 
Трикоциловая кислотаТрикозановая кислотаС22Н45СООНCH3(CH2)21COOHЛипиды клеточных мембран высших растений, липофильные компоненты плодовых тел опят и масло семян сладкого перца, рододендрона, пшеницы78,7—79,1 
Лигноцериновая кислотаТетракозановая кислотаС23Н47СООНCH3(CH2)22COOHСмола букового дерева, горчичное масло (1—2 %), масло понгамии перистой (1,1—3,5 %)
Пентакоциловая кислотаПентакозановая кислотаС24Н49СООНCH3(CH2)23COOHКлеточные стенки микроэукариотов77—83,5 
Церотиновая кислотаГексакозановая кислотаС25Н51СООНCH3(CH2)24COOHПчелиный воск (14—15 %)[27], карнаубский воск листьев пальмы Copernicia cerifera, сахарно-тростниковый воск (Saccharum officinarum)[4]87,4 
Гептакоциловая кислотаГептакозановая кислотаС26Н53СООНCH3(CH2)25COOHМикроорганизмы группы Mycobacterium87,5 
Монтановая кислотаОктакозановая кислотаС27Н55СООНCH3(CH2)26COOHГумито-липоидолитовые и сильно гелифицированные гумитовые угли и торф (монтанский воск), китайский воск из выделений восковой ложнощитовки (Ceroplastes ceriferus) и ложнощитовки пела (Ericerus pela), Сахарно-тростниковый воск (Saccharum officinarum)[4], зверобой продырявленный (Hypericum perforatum)[28].90,9 
Нонакоциловая кислотаНонакозановая кислотаС28Н57СООНCH3(CH2)27COOHСахарно-тростниковый воск (Saccharum officinarum)[4], зверобой продырявленный (Hypericum perforatum)[28]
Мелиссовая кислотаТриаконтановая кислотаС29Н59СООНCH3(CH2)28COOHМлечный сок одуванчика, пчелиный воск (10-15 %)[29], бобовое растение Desmodium laxiflorum[30], Сахарно-тростниковый воск (Saccharum officinarum)[4], зверобой продырявленный (Hypericum perforatum)[28] 92—94
Гентриаконтиловая кислотаГентриаконтановая кислотаС30Н61СООНCH3(CH2)29COOHСахарно-тростниковый воск (Saccharum officinarum)[4], зверобой продырявленный (Hypericum perforatum)[28]
Лацериновая кислотаДотриаконтановая кислотаС31Н63СООНCH3(CH2)30COOHСахарно-тростниковый воск (Saccharum officinarum)[4], зверобой продырявленный (Hypericum perforatum)[28]
Псилластеариновая кислотаТритриаконтановая кислотаС32Н65СООНCH3(CH2)31COOHСахарно-тростниковый воск (Saccharum officinarum)[4]
Геддовая (геддинновая) кислотаТетратриаконтановая кислотаС33Н67СООНCH3(CH2)32COOHСахарно-тростниковый воск (Saccharum officinarum)[4], гуммиарабик, зверобой продырявленный (Hypericum perforatum)[28]
Церопластовая кислотаПентатриаконтановая кислотаС34Н69СООНCH3(CH2)33COOHСахарно-тростниковый воск (Saccharum officinarum)[4]
Гексатриаконтиловая кислотаГексатриаконтановая кислотаС35Н71СООНCH3(CH2)34COOHСахарно-тростниковый воск (Saccharum officinarum)[4]
Закрыть

Ненасыщенные жирные кислоты

Общие сведения о ненасыщенных жирных кислотах

Кислоты, имеющие одну двойную связь, называются мононенасыщенные, две и более двойные связи — полиненасыщенные. Двойные связи могут располагаться по-разному: кислота может иметь конъюгированную (сопряжённую) двойную связь вида —C—C=C—C=C—C—; типичным представителем таких жирных кислот является сорбиновая (транс,транс-2,4-гексадиеновая) кислота

СН3—СН=СН—СН=СН—СООН,

впервые найденная в 1859 году А. В. Гофманом в ягодах рябины обыкновенной (Sorbus aucuparia).

Кислоты могут иметь также несопряжённые двойные связи вида —C—C=C—C—C=C—C—; типичными представителями таких жирных кислот являются линолевая и линоленовая кислоты.

Жирные кислоты могут иметь двойные связи алленового типа —C=C=C— или кумуленового типа —HC=C=C=CH—. Для первого случая примером может служить лабалленовая кислота (5,6-октадекадиеновая кислота)

СН3—(СН2)10—СН=С=СН—(СН2)3—СООН,

которая была идентифицирована в липидах семян растения Leonotis napetaefolia из семейства яснотковые; для второго — 2,4,6,7,8-декапентаеновая кислота

СН3—СН=С=С=СН—СН=СН—СН=СН—СООН

и 4-гидрокси-2,4,5,6,8-декапентаеновая кислота

СН3—СН=СН—СН=С=С=С(ОН)—СН=СН—СООН,

которые были выделены из некоторых растений семейства астровые.

Ненасыщенные жирные кислоты могут содержать также одну или несколько тройных связей. Такие кислоты называют ацетиленовыми, или алкиновыми. К моноалкиновым жирным кислотам относится, например, таурировая (6-октадециновая) кислота

СН3—(СН2)10—С≡С—(СН2)4—СООН,

которая была впервые выделена из семян Picramnia tariri семейства симарубовые, и 6,9-октадецеиновая кислота

СН3—(СН2)7—С≡С—СН2—СН=СН—(СН2)4—СООН,

которая была выделена из орехового масла Ongokea klaineana семейства олаксовые. Это полиненасыщенная кислота имеет одну двойную связь в 6-м положении и тройную связь в 9-м положении углеродного скелета.

Некоторые мононенасыщенные жирные кислоты

Общая формула: СН3—(СН2)m—CH=CH—(CH2)n—COOH (m = ω − 2; n = Δ − 2)

Подробнее Тривиальное название, Систематическое название (IUPAC) ...
Тривиальное названиеСистематическое название (IUPAC)Брутто-формулаIUPAC формула (с метил.конца)IUPAC формула (с карб.конца)Рациональная полуразвёрнутая формулаТпл, °C
Акриловая кислота2-пропеновая кислотаС2Н3COOH3:1ω13:1Δ2СН2=СН—СООН13
Метакриловая кислота2-метил-2-пропеновая кислотаС3Н5СOOH4:1ω14:1Δ2СН2=С(СН3)—СООН14—15
Кротоновая кислота2-бутеновая кислотаС3Н5СOOH4:1ω24:1Δ2СН3—СН=СН—СООН71,4—71,7
Винилуксусная кислота3-бутеновая кислотаС3Н5СOOH4:1ω14:1Δ3СН2=СН—СН2—СООН
Лауроолеиновая кислотацис-9-додеценовая кислотаС11Н21СOOH12:1ω312:1Δ9СН3—СН2—СН=СН—(СН2)7—СООН
Миристолеиновая кислотацис-9-тетрадеценовая кислотаС13Н25СOOH14:1ω514:1Δ9СН3—(СН2)3—СН=СН—(СН2)7—СООН
транс-3-гексадеценовая кислотаС15Н29СOOH16:1ω1316:1Δ3СН3—(СН2)11—СН=СН—(СН2)—СООН
Пальмитолеиновая кислотацис-9-гексадеценовая кислотаС15Н29СOOH16:1ω716:1Δ9СН3—(СН2)5—СН=СН—(СН2)7—СООН
Рицинолевая кислота гидрокси-9-цис-октодеценовая кислота С17Н33СOOH
Петроселиновая кислотацис-6-октадеценовая кислотаС17Н33СOOH18:1ω1218:1Δ6СН3—(СН2)10—СН=СН—(СН2)4—СООН
Олеиновая кислотацис-9-октадеценовая кислотаС17Н33СOOH18:1ω918:1Δ9СН3—(СН2)7—СН=СН—(СН2)7—СООН13—14
Элаидиновая кислотатранс-9-октадеценовая кислотаС17Н33СOOH18:1ω918:1Δ9СН3—(СН2)7—СН=СН—(СН2)7—СООН44
Цис-вакценовая кислотацис-11-октадеценовая кислотаС17Н33СOOH18:1ω718:1Δ11СН3—(СН2)5—СН=СН—(СН2)9—СООН
Транс-вакценовая кислотатранс-11-октадеценовая кислотаС17Н33СOOH18:1ω718:1Δ11СН3—(СН2)5—СН=СН—(СН2)9—СООН
Гадолеиновая кислотацис-9-эйкозеновая кислотаС19Н37СOOH20:1ω1119:1Δ9СН3—(СН2)9—СН=СН—(СН2)7—СООН
Гондоиновая кислотацис-11-эйкозеновая кислотаС19Н37СOOH20:1ω920:1Δ11СН3—(СН2)7—СН=СН—(СН2)9—СООН
Эруковая кислотацис-13-докозеновая кислотаС21Н41СOOH22:1ω922:1Δ13СН3—(СН2)7—СН=СН—(СН2)11—СООН33,8
Нервоновая кислотацис-15-тетракозеновая кислотаС23Н45СOOH24:1ω924:1Δ15СН3—(СН2)7—СН=СН—(СН2)13—СООН
Закрыть

Некоторые полиненасыщенные жирные кислоты

Общая формула: СН3—(СН2)m—(CH=CH—(CH2)х(СН2)n—COOH

Подробнее Тривиальное название, Систематическое название (IUPAC) ...
Тривиальное названиеСистематическое название (IUPAC)Брутто-формулаIUPAC формула (с метил. конца)IUPAC формула (с карб.конца)Рациональная полуразвёрнутая формулаТпл, °C
Сорбиновая кислотатранс,транс-2,4-гексадиеновая кислотаС5Н7COOH6:2ω26:2Δ2,4СН3—СН=СН—СН=СН—СООН134
Линолевая кислотацис,цис-9,12-октадекадиеновая кислотаС17Н31COOH18:2ω618:2Δ9,12СН3(СН2)3—(СН2—СН=СН)2—(СН2)7—СООН−5
γ-Линоленовая кислотацис,цис,цис-6,9,12-октадекатриеновая кислотаС17Н29COOH18:3ω618:3Δ6,9,12СН3—(СН2)—(СН2—СН=СН)3—(СН2)6—СООН
α-Линоленовая кислотацис,цис,цис-9,12,15-октадекатриеновая кислотаС17Н29COOH18:3ω318:3Δ9,12,15СН3—(СН2—СН=СН)3—(СН2)7—СООН
Арахидоновая кислотацис-5,8,11,14-эйкозотетраеновая кислотаС19Н31COOH20:4ω620:4Δ5,8,11,14СН3—(СН2)4—(СН=СН—СН2)4—(СН2)2—СООН−49,5
Дигомо-γ-линоленовая кислота8,11,14-эйкозатриеновая кислотаС19Н33COOH20:3ω620:3Δ8,11,14СН3—(СН2)4—(СН=СН—СН2)3—(СН2)5—СООН
Клупанодоновая кислота4,7,10,13,16-докозапентаеновая кислотаС19Н29COOH20:5ω420:5Δ4,7,10,13,16СН3—(СН2)2—(СН=СН—СН2)5—(СН2)—СООН
Тимнодоновая кислота5,8,11,14,17-эйкозапентаеновая кислотаС19Н29COOH20:5ω320:5Δ5,8,11,14,17СН3—(СН2)—(СН=СН—СН2)5—(СН2)2—СООН
Цервоновая кислота4,7,10,13,16,19-докозагексаеновая кислотаС21Н31COOH22:6ω322:3Δ4,7,10,13,16,19СН3—(СН2)—(СН=СН—СН2)6—(СН2)—СООН
Мидовая кислота5,8,11-эйкозатриеновая кислотаС19Н33COOH20:3ω920:3Δ5,8,11СН3—(СН2)7—(СН=СН—СН2)3—(СН2)2—СООН
Закрыть

См. также

Примечания

Литература

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.