一部の古細菌は光エネルギーの利用も行うようである。バクテリオクロロフィルを使った光合成は知られていないものの[注 24]、高度好塩菌やMarine group IIが保有する、バクテリオロドプシンやプロテオロドプシンは、光駆動プロトンポンプの機能を持つ[118][119]。地球上における光エネルギーの利用はバクテリオクロロフィルを含むクロロフィル型が主だと考えられてきたが、細菌を含めたプロテオロドプシンによるエネルギー生産量はその1割にも達すると見積もられており[120]、古細菌Marine group IIもその一部を占める。ただしこれらは炭素固定を行わない光従属栄養生物と考えられる。
1例のみだが、未培養系統の古細菌MCG-A(Bathyarchaeota class 6)からバクテリオクロロフィルa合成酵素を含む配列が報告されている[14]。このar-bchG(古細菌型バクテリオクロロフィルa合成酵素)は、細菌の持つバクテリオクロロフィルa合成酵素とは系統的に離れており、最も同一性の高いRhodospirillum rubrumとの比較でも27%しか一致しない。大腸菌で発現させた実験によると、実際にこの遺伝子は機能するようである。
Woese, C.R., et al.(1990).“Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”.Proc. Natl. Acad. Sci. U S A87(12): 4576–9.PMID 2112744.
Petitjean, C., et al.(2014).“Rooting the Domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota”.Genome. Biol. Evol.7(1): 191-204.doi:10.1093/gbe/evu274.PMID25527841.
Cavalier-Smith, T.(2014).“The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life”.Cold Spring Harb. Perspect. Biol.6(9).doi:10.1101/cshperspect.a016006.PMID 25183828.
Castelle, C.J., Banfield, J.F.(2018).“Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”.Cell172(6): 1181-1197.doi:10.1016/j.cell.2018.02.016.PMID29522741.
Nunoura, T., et al.(2010).“Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”.Nucleic Acids Research39(8): 3204-23.doi:10.1093/nar/gkq1228.PMID21169198.
Barns, S. M., et al.(1996).“Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences”.Proc Natl Acad Sci U S A93(17): 9188–9193.PMID 8799176.
Elkins, J. G., et al.(2008).“A korarchaeal genome reveals insights into the evolution of the Archaea”.Proc Natl Acad Sci U S A105(23): 8102–7.PMID 18535141.
Evans, P. N., et al.(2015).“Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics”.Nucleic Acids Research350(6259): 434-8.doi:10.1126/science.aac7745.PMID26494757.
Youssef, N. H., et al.(2015).“Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'”.ISME J.9(2): 447-60.doi:10.1038/ismej.2014.141.PMID25083931.
Baker, B. J., et al.(2010).“Enigmatic, ultrasmall, uncultivated Archaea”.Proc. Natl. Acad. Sci. U S A.107(19): 8806-11.doi:10.1073/pnas.0914470107.PMID20421484.
Comolli, L. R., et al.(2009).“Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon”.ISME J.3(2): 159-67.doi:10.1038/ismej.2008.99.PMID18946497.
Narasingarao, P., et al.(2012).“De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”.ISME J.6(1): 81-93.doi:10.1038/ismej.2011.78.PMID21716304.
Waters, E., et al.(2003).“The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”.Proc Natl Acad Sci U S A100(22): 12984–8.PMID 14566062.
Valentine, D. L.(2007).“Adaptations to energy stress dictate the ecology and evolution of the Archaea”.Nat. Rev. Microbiol.5(4): 316–23.doi:10.1038/nrmicro1619.PMID17334387.
Takai, K., et al.(2008).“Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”.Proc. Natl. Acad. Sci. U S A105: 10949-54.doi:10.1073/pnas.0712334105.
Schleper, C., et al.(1995).“Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0”.J. Bacteriol.177: 7050–7059.PMID 8522509.
Sorokin, D.Y., et al.(2018).“Methanonatronarchaeum thermophilum gen. nov., sp. nov. and Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.”.Int. J. Syst. Evol. Microbiol.68(7): 2199-2208.doi:10.1099/ijsem.0.002810.PMID29781801.
Schleper, C., et al.(1995).“Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0”.J. Bacteriol.177: 7050–7059.PMID8522509.
Jolivet, E., et al.(2003).“Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation”.Int. J. Syst. Evol. Microbiol.53: 847-51.doi:10.1099/ijs.0.02503-0.PMID12807211.
Christa Schleper(2007).“Diversity of Uncultivated Archaea: Perspectives From Microbial Ecology and Metagenomics”.Archaea: Evolution, Physiology, and Molecular Biology: 39-50.doi:10.1002/9780470750865.ch4.
Teske, A., Sørensen, K. B.(2008).“Uncultured archaea in deep marine subsurface sediments: have we caught them all?”.ISME J.2(1): 3–18.doi:10.1038/ismej.2007.90.PMID18180743.
Lipp, J. S., et al.(2008).“Significant contribution of Archaea to extant biomass in marine subsurface sediments”.Nature454(7207): 991.doi:10.1038/nature07174.PMID18641632.
López-García, P., et al.(2001).“Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front”.FEMS Microbiol. Ecol.36(2–3): 193–202.PMID11451524.
Brochier-Armanet, C., et al.(2008).“Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota”.Nature Reviews Microbiology6(3): 245–52.doi:10.1038/nrmicro1852.PMID 18274537.
Stieglmeier, M., et al.(2014).“Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota”.Int. J. Syst. Evol. Microbiol.64: 2738-52.doi:10.1099/ijs.0.063172-0.PMID 24907263.
Qin, W., et al.(2017).“Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota”.Int. J. Syst. Evol. Microbiol.67(12): 5067-5079.doi:10.1099/ijsem.0.002416.PMID 29034851.
Jung, M.Y., et al.(2018).“Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil”.Int. J. Syst. Evol. Microbiol.: 3084-3095.doi:10.1099/ijsem.0.002926.PMID 30124400.
Mincer, T.J. et al.(2007).“Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre”.Environ. Microbiol.9(5): 1162-75.doi:10.1111/j.1462-2920.2007.01239.x.PMID17472632.
Burns, D. G., et al.(2007).“Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain”.Int J Syst Evol Microbiol57: 387-92.doi:10.1099/ijs.0.64690-0.
Golyshina, O. V., et al.(2000).“Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea”.Int. J. Syst. Evol. Microbiol.50 Pt 3(3): 997–1006.PMID10843038.
Kuwabara, T., et al.(2005).“Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount”.Int. J. Syst. Evol. Microbiol.55(Pt 6): 2507–14.doi:10.1099/ijs.0.63432-0.PMID16280518.
Huber H, et al.(2000).“Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov.”.Int. J. Syst. Evol. Microbiol.50: 2093–100.PMID 11155984.
Küper, U., et al.(2010).“Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis”.Proc. Natl. Acad. Sci. U S A107(7): 3152-6.doi:10.1073/pnas.0911711107.
Heimerl, T., et al.(2017).“A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans”.Front. Microbiol.8.doi:10.3389/fmicb.2017.01072.
Nickell, S., et al.(2003).“Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography”.J. Struct. Biol.141(1): 34–42.doi:10.1016/S1047-8477(02)00581-6.PMID12576018.
Klingl, A.(2014).“S-layer and cytoplasmic membrane – exceptions from the typical archaeal cell wall with a focus on double membranes”.Front. Microbiol.5.doi:10.3389/fmicb.2014.00624.PMID25505452.
Kinosita, Y., et al.(2016).“Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum”.Nat. Microbiol.1.doi:10.1038/nmicrobiol.2016.148.PMID 27564999.
Ng, S. Y., et al.(2006).“Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications”.J. Mol. Microbiol. Biotechnol.11(3-5): 167–91.PMID 16983194.
Hixon, W. G., Searcy, D. G.(1993).“Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts”.Biosystems29(2-3): 151–60.PMID 8374067.
Zaremba-Niedzwiedzka, K., et al.(2017).“Asgard archaea illuminate the origin of eukaryotic cellular complexity”.Nature541(7637): 353–358.doi:10.1038/nature21031.
Waters, E., et al.(2003).“The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”.Proc. Natl. Acad. Sci. U S A100(22): 12984–8.PMID 14566062.
Pratas, D., Pinho, A.(2017).“On the Approximation of the Kolmogorov Complexity for DNA Sequences”.Pattern Recognition and Image Analysis10255: 259–266.doi:10.1007/978-3-319-58838-4_29.
Musgrave, D. R., et al.(1991).“DNA binding by the archaeal histone HMf results in positive supercoiling”.Proc Natl Acad Sci U S A88(23): 10397–401.PMID 1660135.
Fahrner, R. L., et al.(2001).“An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone”.Protein Sci.10(10): 2002–7.PMID 11567091.
DeLange, R. J., et al.(1981).“A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequence”.J. Biol. Chem.256(2): 905–11.PMID 7005226.
Matsunaga, F., et al.(2003).“Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin”.EMBO Rep4(2): 154–8.PMID 12612604.
Robinson, N.P., et al.(2004).“Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus”.CELL161(1): 25–38.PMID 14718164.
Lecompte, O., et al.(2002).“Comparative analysis of ribosomal proteins in complete genomes: An example of reductive evolution at the domain scale”.Nucleic Acids Research30: 5382–5390.PMID 12490706.
Dridi, B., et al.(2011).“The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea”.J. Antimicrob. Chemother.66(9): 2038-44.doi:10.1093/jac/dkr251.PMID 21680581.
Huber, H., et al.(2008).“A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis”.Proc Natl Acad Sci U S A105(22): 7851-6.doi:10.1073/pnas.0801043105.
Lindås, A.C., et al.(2008).“A unique cell division machinery in the Archaea”.Proc. Natl. Acad. Sci. U S A105(45): 18942-6.doi:10.1073/pnas.0809467105.PMID 18987308.
Cann, I. K.(2008).“Cell sorting protein homologs reveal an unusual diversity in archaeal cell division”.Proc Natl Acad Sci U S A105(45): 18653-4.doi:10.1073/pnas.0810505106.PMID 19033202.
Fröls, S., et al.(2008).“UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation”.Mol. Microbiol.70(4): 938-52.doi:10.1111/j.1365-2958.2008.06459.x.PMID 18990182.
Fröls, S., et al.(2011).“Reactions to UV damage in the model archaeon Sulfolobus solfataricus”.Biochem. Soc. Trans.37: 36-41.doi:10.1042/BST0370036.PMID 19143598.
Eppley, J.M., et al.(2007).“Genetic exchange across a species boundary in the archaeal genus ferroplasma”.Genetics177(1): 407-16.doi:10.1534/genetics.107.072892.PMID 17603112.
Francis CA, et al.(2007).“New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”.ISME J.1(1): 19–27.doi:10.1038/ismej.2007.8.PMID18043610.
Leininger, S., et al.(2006).“Archaea predominate among ammonia-oxidizing prokaryotes in soils”.Nature442(7104): 806–9.doi:10.1038/nature04983.PMID16915287.
Boetius, A., et al.(2000).“A marine microbial consortium apparently mediating anaerobic oxidation of methane”.Nature407(6804): 623-6.doi:10.1038/35036572.PMID 11034209.
Doxey, A. C., et al.(2015).“Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production”.ISME J.9(2): 461-71.doi:10.1038/ismej.2014.142.PMID 25126756.
Frigaard, N.U., et al.(2006).“Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea”.Nature439(7078): 847-50.doi:10.1038/nature04435.PMID 16482157.
Schopf, S., et al.(2008).“An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri”.Arch. Microbiol.190(3): 371-7.doi:10.1007/s00203-008-0371-9.PMID18438643.
van Hoek, A. H., et al.(2000).“Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates”.Mol. Biol. Evol.17(2): 251–8.PMID10677847.
Samuel, B.S., et al.(2007).“Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut”.Proc. Natl. Acad. Sci. U S A104(25): 10643–8.PMID 17563350.
Brugère, J. F., et al.(2014).“Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease.”.Gut Microbes.5(1): 5-10.doi:10.4161/gmic.26749.
Vianna, M. E., et al.(2006).“Identification and quantification of archaea involved in primary endodontic infections”.J. Clin. Microbiol.44(4): 1274–82.PMID 16597851.
Chaudhary, P.P., et al.(2018).“Methanogens in humans: potentially beneficial or harmful for health”.Appl. Microbiol. Biotechnol.102(7): 3095-3104.doi:10.1007/s00253-018-8871-2.PMID 29497795.
Namwong, S., et al.(2007).“Halococcus thailandensis sp. nov., from fish sauce in Thailand.”.Int. J. Syst. Evol. Microbiol.57: 2199-203.doi:10.1099/ijs.0.65218-0.PMID17911282.
Jenney, F. E., Adams, M. W.(January 2008).“The impact of extremophiles on structural genomics (and vice versa)”.Extremophiles12(1): 39–50.doi:10.1007/s00792-007-0087-9.PMID17563834.
Schiraldi, C., et al.(2002).“Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics”.J. Ind. Microbiol. Biotechnol.28(1): 23-31.doi:10.1038/sj/jim/7000190.PMID11938468.
Iwabe, N., et al.(1989).“Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes”.Proc. Natl. Acad. Sci. U S A86(23): 9355–9.PMID 2531898.
Wilde, S. A., et al.(1980).“Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago”.Earth and Planetary Science Letters47(3): 370–382.doi:10.1016/0012-821X(80)90024-2.
Manhesa, G., et al.(2001).“Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics”.Earth and Planetary Science Letters409(6817): 175-8.doi:10.1038/35051550.PMID11196637.
Dodd, M. S., et al.(2017).“Evidence for early life in Earth's oldest hydrothermal vent precipitates”.Nature543(7643).doi:10.1038/nature21377.PMID28252057.
Bell, E. A., et al.(2015).“Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”.Proc. Natl. Acad. Sci. U S A112(47): 14518-21.doi:10.1073/pnas.1517557112.PMID26483481.
Feng, D. F., et al.(1997).“Determining divergence times with a protein clock: update and reevaluation”.Proc. Natl. Acad. Sci. U S A94(24): 13028–33.PMID 9371794.
Wolfe, J. M., et al.(2018).“Horizontal gene transfer constrains the timing of methanogen evolution”.Nat. Ecol. Evol.2(5): 897-903.doi:10.1038/s41559-018-0513-7.PMID 29610466.
Betts, H. C., et al.(2018).“Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin”.Nat. Ecol. Evol.2: 1556–1562.doi:10.1038/s41559-018-0644-x.PMID 30127539.
Gogarten, J.P., et al.(1989).“Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes”.Proc. Natl. Acad. Sci. U S A86(27): 6661–5.PMID 2528146.
Cavalier-Smith, T.(2002).“The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification”.Cold Spring Harb Perspect Biol.52: 7-76.doi:10.1099/00207713-52-1-7.
Lake, J. A., et al.(1992).“Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”.Science257(5066): 74-6.PMID 1621096.
Baldauf, S. L., et al.(1996).“The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny”.Proc. Natl. Acad. Sci. U S A93(15): 7749-54.PMID 8755547.
Cox, C. J., et al.(2008).“The Deep Archaeal Roots of Eukaryotes”.Proc. Natl. Acad. Sci. U S A105(51): 20356–20361.doi:10.1073/pnas.0810647105.PMID 19073919.
Williams, T. A., et al.(2013).“An archaeal origin of eukaryotes supports only two primary domains of life”.Nature504(7479): 231-6.doi:10.1038/nature12779.PMID 24336283.
Battistuzzi, F. U., et al.(2004).“A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land”.BMC. Evol. Biol.4(44).PMID 15535883.
Baldauf, S. L., et al.(1996).“The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny”.Proc Natl Acad Sci U S A93(15): 7749-54.PMID 8755547.
Lake, J. A., et al.(1984).“Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes”.Proc. Natl. Acad. Sci. U S A81(12): 3786-90.PMID 6587394.
Lake, J. A., et al.(1988).“Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”.Nature331(6152): 184-6.doi:10.1038/331184a0.PMID 3340165.
Yamagishi, A., T. Oshima(1995).“Retern to dichotomy: Bacteria and Archaea”.Chemical evolution: Self-organization of the macromolecules of life: 155-158.ISBN978-0937194324.PMID.
Yamagishi, A., T. Oshima(1995).“Retern to dichotomy: Bacteria and Archaea”.Chemical evolution: Self-organization of the macromolecules of life: 156.ISBN978-0937194324.PMID.
Nunoura, T., et al.(2011).“Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”.Nucleic Acids Res39(8): 3204-23.doi:10.1093/nar/gkq1228.PMID 21169198.
Woese, C. R., Fox, G. E.(1977).“Phylogenetic structure of the prokaryotic domain: the primary kingdoms”.Proc. Natl. Acad. Sci. U S A74(11): 5088–90.PMID 270744.
Brock, T.D., et al.(1972).“Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”.Arch. Mikrobiol.84(1): 54-68.PMID 4559703.
Brock, T. D., et al.(1972).“Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”.Arch. Mikrobiol.84: 54–68.doi:10.1007/BF00408082.PMID 4559703.
De Smedt, J., De Ley, J.,(1977).“Intra- and Intergeneric Similarities of Agrobacterium Ribosomal Ribonucleic Acid Cistrons”.Int. J. Syst. Bacteria27: 222-240.
Zuckerkandl, E., Pauling, L.(March 1965).“Molecules as documents of evolutionary history”.Journal of Theoretical Biology8(2): 357–66.doi:10.1016/0022-5193(65)90083-4.PMID5876245.
Tornabene, T.G., et al.(1978).“Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacterium thermoautotrophicum”.J. Mol. Evol.11(3): 259–66.PMID 691077.
Stetter, K. O.(1982).“Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C”.Nature300: 258 - 260.doi:10.1038/300258a0.
Bult, C.J., et al.(1996).“Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii”.Science273(5278): 1058–1073.doi:10.1126/science.273.5278.1058.PMID 868808.
No authors(2002).“Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology”.Int. J. Syst. Evol. Microbiol.52: 685-90.doi:10.1099/00207713-52-3-685.PMID 12054225.
Kaneko, T., et al.(1996).“Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions”.DNA Res.3(3): 109-36.PMID 8905231.
Boone, D. R., Castenholz, R. W. & Garrity, G. M.(2001).Bergey's Manual of Systematic Bacteriology, 2nd Edition, Volume One,The Archaea and the Deeply Branching and Phototrophic Bacteria.Springer-Verlag.ISBN 0387987711