Loading AI tools
ウィキペディアから
航空測量(こうくうそくりょう)とは、飛行機、ヘリコプター、無人航空機(ドローン)などから地上撮影した画像データを利用して地図作成(画像判読含む)することや、地球物理データの環境計測などを行うこと[1][2]。略語として航測(こうそく)が用いられる[3]。
航空測量の「航空写真測量(空中写真測量)」分野は、地形図作成の基盤技術として広く世界で利用されている。また、地球物理データの環境計測の分野では、国土地理院が航空機を使用した「航空磁気測量」の成果として『全国航空磁気異常図』、『火山地域航空磁気測量図』を公表するなどその対象分野は、広範である[4]。航空測量は、「航空写真測量」、「空中写真測量」の同義語とされている[5][6][7]。
航空写真測量(空中写真測量)は、写真測量法の分類のひとつである。航空写真(空中写真)は、空中から固定カメラを使用して垂直に撮影された画像写真である。地図作成の場合には、航空機に航測用のFMC装置(シャッタースピードと飛行機の速度の差によって生じる画像のブレを防止)を搭載した広角または普通角レンズカメラを設置し、上空から隣接する写真を60%程度のオーバーラップ(重複率)を持つ垂直航空写真を撮影士が撮影する。その後、空中三角測量、現地調査、図化、編集作業を経て図面を作成する。日本の基本図である2万5千分1地形図や地方公共団体が作成する「都市計画図」の基図なども航空測量によって作成されている[2][8][9][10]。
航空三角測量は、航空写真画像から解析図化機やデジタルステレオ図化機等により、既知の基準点や標定点などの座標をもとに、図化標定に必要なパスポイント(撮影コース間の写真接合点)とタイポイント(隣接撮影コース間の写真接合点)の水平位置と標高を決定する作業のこと。具体的には、相隣り合う2枚の撮影された写真画像を利用してモデルをつくり、標定基準点を用いて標定ができると、順次相隣り合う写真を接続標定して1コース全体を1つのモデルとする作業となる。「航空三角測量」の方法は、図化機による「機械法」とコンピュータを利用して計算する「解析法」がある[11][2][12][13]。
航空レーザ測量は、航空機に搭載した(1)レーザ測距装置(レーザスキャナ)から地上にレーザ光を照射し、地上から反射するレーザ光との時間差より得られる地上までの距離(レーザ計測点)と、(2)GNSS測量機、(3)IMU(慣性計測装置)から得られる航空機の位置情報より、地上の標高や地形の形状を調べる測量方法。
(1)レーザ測距装置(レーザスキャナ)は、レーザ光を1秒間に50,000~100,000回発射することにより、地表で50~60cm間隔以下の間隔で計測することができる。なまた、光学カメラを併設しており、地表の画像も同時に取得することができる。
(2)GNSS受信機は、航空機の位置(x,y,z)を知ることができる。一般に地上の電子基準点を利用することにより「連続キネマティック測量」を実現し、地上の測量と同様な高精度の位置測定を可能としている。
(3)IMU(慣性計測装置)は、いわゆるジャイロを改良したもので、飛行機の姿勢や加速度を測ることができる。この測定値によりレーザ光の発射された方向を正しく補正することが可能となる。
航空磁気測量は、飛行機に磁気センサーを搭載し、面的にデータを取得することで磁場分布を明らかにする測量のこと。観測された磁場から標準的な地球磁場を取り除くことで、 局地的な磁気異常を表した磁気異常図が作成される。日本では国土地理院が測量用航空機「くにかぜ」及び「くにかぜⅡ」により1962年(昭和37年)から1998年(平成10年)にかけて実施し、日本列島及び周辺地域の全国航空磁気異常図が作成された。また、火山地域には磁気異常が大きい場所があることが知られており、1999年(平成11年)から2001年(平成13年)にかけて、岩手山、有珠山、樽前山、北海道駒ヶ岳及びその周辺地域における地下構造を解明する目的で航空磁気測量が実施された。[14]
航空重力測量は、航空機に航空重力計(相対重力計)を搭載して上空から重力を測定する手法のこと。重力計合わせてGNSSや加速度センサー、ジャイロスコープにより航空機の位置や加速度、姿勢を測定し、飛行高度、加速度、機体の傾斜、地球自転による遠心力の効果(エトベス効果)等の影響を補正することにより、最終的な地上の重力値を決定する。日本では国土地理院が民間航空機を使用し、2019年(令和元年)から測定を開始した。航空重力計は、日本重力基準網2016(JGSN2016)に基づいた重力点を参照点に、航空機の位置測定時の基準には、電子基準点が使用される。[15]
国土交通省国土地理院は、無人航空機(UAV:通称ドローン)を測量で使用できるように、「UAVを用いた公共測量マニュアル(案)」及び「公共測量におけるUAVの使用に関する安全基準(案)」を作成し、2016年3月30日に公表。「UAVを用いた公共測量マニュアル(案)」についても2017年3月31日に改正し、公共測量だけでなく、国土交通省が推進する「i-Construction」に係る測量作業において適用することを前提にしている。測量業者が円滑かつ安全にUAVによる測量を実施できる環境を整えることで建設現場における生産性向上に貢献するとしている[16]。
UAVの自動航行を使って操縦者と補助者を不要にした測量の自動化も進んでいる[17][18]。
2020年9月から11月までの間、海上保安庁は、青森県の八戸飛行場(海上自衛隊八戸航空基地)にて遠隔操縦無人機SeaGuardian(シーガーディアン)を運航した飛行実証を実施することで「海上保安体制強化に関する方針」に基づき、広域の海洋監視が伴う海上保安庁の捜索救助や災害対応、海上法執行活動などの業務でのRPAシステムの有効性を検証。SeaGuardianのシステムは、逆合成開口レーダー(ISAR)イメージングモードを備えたマルチモード海洋表面探査レーダー、AIS(自動船舶識別装置)情報の受信機、光学カメラと赤外線カメラを搭載した高精細のフルモーションビデオセンサー等で構成。本機は、当該センサー機能により、数千平方海里上の船舶の情報をリアルタイム検出・識別が可能。また、搭載するレイセオン製のSeaVue海洋表面探査レーダーは、船舶ターゲットの連続追跡に加えて、AISトランスミッターのレーダー追跡と連動[19] [20] [21] [22] [23]。
この節の出典は「日本写真測量発達史年表」(1972)[24]を基礎情報としている。
ここでは、国土交通省国土地理院の測量用航空機「くにかぜIII」の運用内容について紹介する[28]。災害発生時においては、官民の航空測量機関が、被災地の航空機による航空写真撮影等による最新データを取得し関係機関へ提供している。平時は、航空測量による地形図作成、文化財保護、国土の強靭化計画や産業支援に寄与する一方で、ドローン、航空レーザー測量など新たな測量技術・研究開発・対応も官民連携して担っている。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.