Loading AI tools
unsur kimia dengan lambang Sc dan nomor atom 21 Dari Wikipedia, ensiklopedia bebas
Skandium adalah sebuah unsur kimia dengan lambang Sc dan nomor atom 21. Ia merupakan salah satu unsur blok-d metalik berwarna putih keperakan. Secara historis, ia telah diklasifikasikan sebagai unsur tanah jarang,[6] bersama dengan itrium dan lantanida. Ia ditemukan pada tahun 1879 melalui analisis spektrum mineral euksenit dan gadolinit dari Skandinavia.[7]
21Sc Skandium | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sifat umum | |||||||||||||||||||||||||||||||||||||||||
Pengucapan | /skandium/[1] | ||||||||||||||||||||||||||||||||||||||||
Penampilan | putih keperakan | ||||||||||||||||||||||||||||||||||||||||
Skandium dalam tabel periodik | |||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
Nomor atom (Z) | 21 | ||||||||||||||||||||||||||||||||||||||||
Golongan | golongan 3 | ||||||||||||||||||||||||||||||||||||||||
Periode | periode 4 | ||||||||||||||||||||||||||||||||||||||||
Blok | blok-d | ||||||||||||||||||||||||||||||||||||||||
Kategori unsur | logam transisi | ||||||||||||||||||||||||||||||||||||||||
Berat atom standar (Ar) |
| ||||||||||||||||||||||||||||||||||||||||
Konfigurasi elektron | [Ar] 3d1 4s2 | ||||||||||||||||||||||||||||||||||||||||
Elektron per kelopak | 2, 8, 9, 2 | ||||||||||||||||||||||||||||||||||||||||
Sifat fisik | |||||||||||||||||||||||||||||||||||||||||
Fase pada STS (0 °C dan 101,325 kPa) | padat | ||||||||||||||||||||||||||||||||||||||||
Titik lebur | 1814 K (1541 °C, 2806 °F) | ||||||||||||||||||||||||||||||||||||||||
Titik didih | 3109 K (2836 °C, 5136 °F) | ||||||||||||||||||||||||||||||||||||||||
Kepadatan mendekati s.k. | 2,985 g/cm3 | ||||||||||||||||||||||||||||||||||||||||
saat cair, pada t.l. | 2,80 g/cm3 | ||||||||||||||||||||||||||||||||||||||||
Kalor peleburan | 14,1 kJ/mol | ||||||||||||||||||||||||||||||||||||||||
Kalor penguapan | 332,7 kJ/mol | ||||||||||||||||||||||||||||||||||||||||
Kapasitas kalor molar | 25,52 J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||
Tekanan uap
| |||||||||||||||||||||||||||||||||||||||||
Sifat atom | |||||||||||||||||||||||||||||||||||||||||
Bilangan oksidasi | 0,[2] +1,[3] +2,[4] +3 (oksida amfoter) | ||||||||||||||||||||||||||||||||||||||||
Elektronegativitas | Skala Pauling: 1,36 | ||||||||||||||||||||||||||||||||||||||||
Energi ionisasi | ke-1: 633,1 kJ/mol ke-2: 1235,0 kJ/mol ke-3: 2388,6 kJ/mol (artikel) | ||||||||||||||||||||||||||||||||||||||||
Jari-jari atom | empiris: 162 pm | ||||||||||||||||||||||||||||||||||||||||
Jari-jari kovalen | 170±7 pm | ||||||||||||||||||||||||||||||||||||||||
Jari-jari van der Waals | 211 pm | ||||||||||||||||||||||||||||||||||||||||
Lain-lain | |||||||||||||||||||||||||||||||||||||||||
Kelimpahan alami | primordial | ||||||||||||||||||||||||||||||||||||||||
Struktur kristal | susunan padat heksagon (hcp) | ||||||||||||||||||||||||||||||||||||||||
Ekspansi kalor | α, poli: 10,2 µm/(m·K) (pada s.k.) | ||||||||||||||||||||||||||||||||||||||||
Konduktivitas termal | 15,8 W/(m·K) | ||||||||||||||||||||||||||||||||||||||||
Resistivitas listrik | α, poli: 562 nΩ·m (pada s.k., dihitung) | ||||||||||||||||||||||||||||||||||||||||
Arah magnet | paramagnetik | ||||||||||||||||||||||||||||||||||||||||
Suseptibilitas magnetik molar | +315,0×10−6 cm3/mol (292 K)[5] | ||||||||||||||||||||||||||||||||||||||||
Modulus Young | 74,4 GPa | ||||||||||||||||||||||||||||||||||||||||
Modulus Shear | 29,1 GPa | ||||||||||||||||||||||||||||||||||||||||
Modulus curah | 56,6 GPa | ||||||||||||||||||||||||||||||||||||||||
Rasio Poisson | 0,279 | ||||||||||||||||||||||||||||||||||||||||
Skala Brinell | 736–1200 MPa | ||||||||||||||||||||||||||||||||||||||||
Nomor CAS | 7440-20-2 | ||||||||||||||||||||||||||||||||||||||||
Sejarah | |||||||||||||||||||||||||||||||||||||||||
Penamaan | dari Skandinavia | ||||||||||||||||||||||||||||||||||||||||
Prediksi | D. Mendeleev (1871) | ||||||||||||||||||||||||||||||||||||||||
Penemuan dan isolasi pertama | Lars F. Nilson (1879) | ||||||||||||||||||||||||||||||||||||||||
Isotop skandium yang utama | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
Skandium hadir di sebagian besar endapan senyawa tanah jarang dan uranium, tetapi ia diekstraksi dari bijih-bijih ini hanya di beberapa tambang di seluruh dunia. Karena sedikitnya ketersediaan dan kesulitan dalam persiapan skandium metalik, yang pertama kali dilakukan pada tahun 1937, aplikasi skandium tidak dikembangkan hingga tahun 1970-an, ketika efek positif skandium pada paduan aluminium ditemukan. Hingga hari ini, penggunaannya dalam paduan semacam itu tetap menjadi satu-satunya aplikasi utamanya. Perdagangan global skandium oksida adalah 15–20 ton per tahun.[8]
Sifat-sifat senyawa skandium berada di antara sifat-sifat aluminium dan itrium. Terdapat hubungan diagonal antara perilaku magnesium dan skandium, seperti halnya antara berilium dan aluminium. Dalam senyawa kimia dari unsur-unsur golongan 3, keadaan oksidasi yang dominan adalah +3.
Skandium adalah logam lunak dengan penampilan keperakan. Ia mengembangkan cor agak kekuningan atau merah muda saat teroksidasi oleh udara. Ia rentan terhadap pelapukan dan akan larut secara perlahan di sebagian besar asam encer. Ia tidak akan bereaksi dengan campuran asam nitrat (HNO
3) 1:1 dan asam fluorida (HF) 48,0%, kemungkinan karena pembentukan lapisan pasif yang kedap cairan. Serpihan skandium akan menyala di udara dengan nyala kuning cemerlang untuk membentuk skandium oksida.[9]
Di alam, skandium ditemukan secara eksklusif sebagai isotop 45Sc, yang memiliki spin inti 7/2; ia adalah satu-satunya isotop skandium yang stabil. 25 radioisotop telah dikarakterisasi dengan yang paling stabil adalah 46Sc, yang memiliki waktu paruh 83,8 hari; 47Sc, 3,35 hari; 48Sc, 43,7 jam; dan pemancar positron 44Sc, 4,04 jam. Semua isotop radioaktif yang tersisa memiliki waktu paruh kurang dari 4 jam, dan sebagian besar memiliki waktu paruh kurang dari 2 menit. Unsur ini juga memiliki lima isomer nuklir, dengan yang paling stabil adalah 44m2Sc (t1/2 = 58,6 jam).[10]
Isotop skandium yang diketahui berkisar dari 36Sc hingga 60Sc. Mode peluruhan utama untuk isotop dengan massa yang lebih rendah dari satu-satunya isotop stabil, 45Sc, adalah penangkapan elektron, dan mode utama untuk isotop dengan massa yang lebih tinggi adalah emisi beta. Produk peluruhan utama untuk isotop dengan massa yang lebih rendah dari 45Sc adalah isotop kalsium dan produk utama untuk isotop dengan massa yang lebih tinggi adalah isotop titanium.[10]
Di kerak Bumi, skandium tidaklah jarang. Perkiraan kelimpahannya bervariasi mulai dari 18 hingga 25 ppm, yang sebanding dengan kelimpahan kobalt (20–30 ppm). Skandium hanya merupakan unsur paling umum ke-50 di Bumi (paling melimpah ke-35 di kerak Bumi), tetapi ia merupakan unsur paling umum ke-23 di Matahari.[11] Namun, skandium didistribusikan secara jarang dan terjadi dalam jumlah kecil di banyak mineral.[12] Beberapa mineral langka dari Skandinavia[13] dan Madagaskar,[14] seperti tortveitit, euksenit, dan gadolinit, adalah satu-satunya sumber terkonsentrasi yang diketahui dari unsur ini. Tortveitit dapat mengandung hingga 45% skandium dalam bentuk skandium oksida.[13]
Bentuk skandium yang stabil dibuat dalam supernova melalui proses-r.[15] Skandium juga dibuat melalui spalasi sinar kosmik dari inti besi yang lebih melimpah.
Produksi skandium dunia adalah sekitar 15–20 ton per tahun, dalam bentuk skandium oksida. Permintaannya sekitar 50% lebih tinggi[butuh rujukan]
, dan baik produksi maupun permintaan terus meningkat. Pada tahun 2003, hanya tiga tambang yang menghasilkan skandium: tambang uranium dan besi di Zhovti Vody di Ukraina, tambang tanah jarang di Bayan Obo, Tiongkok, dan tambang apatit di semenanjung Kola, Rusia.[butuh rujukan]
Sejak saat itu, banyak negara lain telah membangun fasilitas penghasil skandium, termasuk 5 ton/tahun (7,5 ton/tahun Sc
2O
3) oleh Nickel Asia Corporation dan Sumitomo Metal Mining di Filipina.[16][17] Di Amerika Serikat, NioCorp Development berharap[per kapan?] dapat mengumpulkan AS$1 miliar[18] untuk membuka tambang niobium di situs Elk Creek di tenggara Nebraska,[19] yang mungkin dapat menghasilkan sebanyak 95 ton skandium oksida setiap tahunnya.[20] Dalam setiap kasus, skandium merupakan produk sampingan dari ekstraksi unsur lain dan dijual sebagai skandium oksida.[21][22][23]
Untuk menghasilkan logam skandium, skandium oksida diubah menjadi skandium fluorida dan kemudian direduksi dengan logam kalsium.[24]
Madagaskar dan wilayah Iveland-Evje di Norwegia memiliki satu-satunya simpanan mineral dengan kandungan skandium tinggi, tortveitit (Sc,Y)2(Si2O7), tetapi tidak dieksploitasi.[22] Mineral kolbekit ScPO
4 · 2H2O memiliki kandungan skandium yang sangat tinggi tetapi tidak tersedia dalam endapan yang lebih besar.[22]
Tidak adanya produksi jangka panjang yang andal, aman, dan stabil, telah membatasi aplikasi komersial skandium. Meskipun tingkat penggunaannya rendah, skandium menawarkan manfaat yang signifikan. Yang sangat menjanjikan adalah penguatan paduan aluminium dengan skandium sesedikit 0,5%.[25] Zirkonia yang distabilkan dengan skandium memiliki permintaan pasar yang terus meningkat untuk digunakan sebagai elektrolit berefisiensi tinggi dalam sel bahan bakar oksida padat.
USGS melaporkan bahwa, dari tahun 2015 hingga 2019 di A.S., harga ingot skandium dalam jumlah kecil adalah AS$107 hingga AS$134 per gram, dan skandium oksida memiliki harga AS$4 hingga AS$5 per gram.[26]
Kimia skandium hampir seluruhnya didominasi oleh ion trivalen, Sc3+. Jari-jari dari ion M3+ pada tabel di bawah ini menunjukkan bahwa sifat kimia ion skandium lebih mirip dengan ion itrium dibandingkan dengan ion aluminium. Sebagian karena kesamaan ini, skandium sering diklasifikasikan sebagai unsur mirip lantanida.[27]
Oksida Sc2O3 dan hidroksida Sc(OH)3 bersifat amfoterik:[28]
ScOOH-α dan -γ berstruktur isostruktural dengan aluminium hidroksida oksida.[29] Larutan Sc3+ dalam air bersifat asam karena hidrolisis.
Halida ScX
3, dengan X= Cl, Br, atau I, sangat larut dalam air, tetapi ScF
3 tidak dapat larut. Pada keempat halida itu, skandium berkoordinasi 6. Halida tersebut adalah asam Lewis; misalnya, ScF
3 dapat larut dalam larutan yang mengandung ion fluorida berlebih untuk membentuk [ScF
6]3−. Bilangan koordinasi 6 adalah tipikal untuk Sc(III). Pada ion Y3+ dan La3+ yang lebih besar, bilangan koordinasi 8 dan 9 adalah umum. Skandium triflat kadang-kadang digunakan sebagai katalis asam Lewis dalam kimia organik.[30]
Skandium membentuk serangkaian senyawa organologam dengan ligan siklopentadienil (Cp), mirip dengan perilaku lantanida. Salah satu contohnya adalah dimer yang dijembatani klorin, [ScCp
2Cl]
2, dan turunan terkait dari ligan pentametilsiklopentadienil.[31]
Senyawa yang menampilkan skandium dalam keadaan oksidasi selain +3 jarang terjadi tetapi terkarakterisasi dengan baik. Senyawa biru kehitaman CsScCl
3 adalah salah satu yang paling sederhana. Bahan ini mengadopsi struktur seperti lembaran yang menunjukkan ikatan yang luas antara pusat skandium(II).[32] Skandium hidrida tidak dipahami dengan baik, meskipun tampaknya bukan sebuah hidrida yang mengandung garam dari Sc(II).[4] Seperti yang diamati untuk sebagian besar unsur, skandium hidrida diatomik telah diamati secara spektroskopi pada suhu tinggi dalam fase gas.[3] Skandium borida dan karbida bersifat non-stoikiometri, seperti unsur tetangganya.[33]
Keadaan oksidasi yang lebih rendah (+2, +1, 0) juga telah teramati pada senyawa organoskandium.[34][35][36][37]
Dmitri Mendeleev, yang disebut sebagai bapak tabel periodik, meramalkan adanya unsur ekaboron, dengan massa atom antara 40 dan 48 pada tahun 1869. Lars F. Nilson dan timnya mendeteksi unsur ini dalam mineral euksenit dan gadolinit pada 1879. Nilson menyiapkan 2 gram skandium oksida dengan kemurnian tinggi.[38][39] Dia menamai unsur tersebut dengan skandium, dari bahasa Latin Scandia yang berarti "Skandinavia". Nilson tampaknya tidak mengetahui prediksi Mendeleev, tetapi Per T. Cleve mengenali korespondensi tersebut dan memberi tahu Mendeleev.[40][41]
Skandium metalik diproduksi pertama kali pada tahun 1937 melalui elektrolisis sebuah campuran eutektik kalium, litium, dan skandium klorida, pada suhu 700–800 °C.[42] Satu pon pertama logam skandium murni 99% diproduksi pada tahun 1960. Produksi paduan aluminium dimulai pada tahun 1971, menyusul sebuah paten Amerika Serikat.[43] Paduan aluminium–skandium juga dikembangkan di USSR.[44]
Kristal laser garnet gadolinium-skandium-galium (GSGG) digunakan dalam aplikasi pertahanan strategis yang dikembangkan untuk Strategic Defense Initiative (SDI) pada 1980-an dan 1990-an.[45][46]
Pada awal 2018, bukti dikumpulkan dari data spektrometer kelimpahan skandium, vanadium, dan itrium yang signifikan pada bintang raksasa merah di Gugus Bintang Inti (NSC) di Pusat Galaksi. Penelitian lebih lanjut menunjukkan bahwa ini adalah ilusi yang disebabkan oleh suhu yang relatif rendah (di bawah 3.500 K) dari bintang-bintang ini yang menutupi sinyal kelimpahan, dan fenomena ini dapat diamati pada raksasa merah lainnya.[47]
Penambahan skandium ke aluminium akan membatasi pertumbuhan butir di zona panas komponen aluminium yang dilas. Ini memiliki dua efek menguntungkan: Al
3Sc yang diendapkan membentuk kristal yang lebih kecil daripada paduan aluminium lainnya,[48] dan volume zona bebas-endapan pada batas butir dari paduan aluminium pengerasan-usia dapat berkurang.[48] Endapan Al
3Sc merupakan endapan koheren yang memperkuat matriks aluminium dengan menerapkan medan regangan elastis yang menghambat gerakan dislokasi (deformasi plastis). Al
3Sc memiliki struktur kesetimbangan superkisi L12 yang eksklusif untuk sistem ini.[49] Dispersi halus dari endapan skala nano dapat dicapai melalui pengolahan panas yang juga dapat memperkuat paduan tersebut melalui pengerasan rangka.[50] Perkembangan terbaru meliputi penambahan logam transisi seperti Zr dan logam tanah jarang seperti Er menghasilkan cangkang yang mengelilingi endapan Al
3Sc berbentuk bola yang akan mengurangi pengasaran.[51] Cangkang ini ditentukan oleh difusivitas unsur pemadu dan menurunkan biaya paduan tersebut karena lebih sedikit Sc yang tersubstitusi sebagian oleh Zr sambil mempertahankan stabilitas dan lebih sedikit Sc yang dibutuhkan untuk membentuk endapan.[52] Ini telah membuat Al
3Sc agak kompetitif dengan paduan titanium bersama dengan beragam aplikasi. Namun, paduan titanium, yang serupa dalam hal keringanan dan kekuatan, lebih murah dan lebih banyak digunakan.[53]
Paduan Al
20Li
20Mg
10Sc
20Ti
30 memiliki kekuatan setara titanium, ringan seperti aluminium, dan sekeras beberapa keramik.[54]
Aplikasi utama dari skandium menurut beratnya adalah paduan aluminium–skandium untuk komponen industri kedirgantaraan kecil. Paduan ini mengandung antara 0,1% dan 0,5% skandium. Mereka digunakan pada pesawat militer Rusia, khususnya Mikoyan-Gurevich MiG-21 dan MiG-29.[48]
Beberapa perlengkapan olahraga, yang mengandalkan material ringan dengan performa tinggi, telah dibuat dengan paduan skandium–aluminium, antara lain pemukul bisbol,[55] tiang tenda, serta rangka dan komponen sepeda.[56] Tongkat lacrosse juga dibuat dengan skandium. Perusahaan manufaktur senjata api Amerika Smith & Wesson memproduksi pistol dan revolver semi-otomatis dengan bingkai paduan skandium dan silinder titanium atau baja karbon.[57][58]
Beberapa dokter gigi menggunakan laser garnet itrium-skandium-galium yang didoping erbium-kromium (Er,Cr:YSGG) untuk persiapan kavitas dan endodontik.[59]
Lampu halida logam berbasis skandium pertama dipatenkan oleh General Electric dan dibuat di Amerika Utara, meskipun sekarang diproduksi di semua negara industri besar. Sekitar 20 kg skandium (sebagai Sc
2O
3) digunakan setiap tahunnya di Amerika Serikat untuk lampu lucutan berintensitas tinggi.[60] Salah satu jenis lampu halida logam, mirip dengan lampu uap raksa, dibuat dari skandium triiodida dan natrium iodida. Lampu ini adalah sumber cahaya putih dengan indeks sesuaian warna tinggi yang cukup menyerupai sinar matahari untuk memungkinkan reproduksi warna yang baik dengan kamera TV.[61] Sekitar 80 kg skandium digunakan dalam lampu/bola lampu halida logam secara global per tahun.[butuh rujukan]
[62]
Isotop radioaktif 46Sc digunakan di kilang minyak sebagai bahan pelacak.[60] Skandium triflat adalah sebuah asam Lewis katalitik yang digunakan dalam kimia organik.[63]
Skandium elemental dianggap tidak beracun, meskipun pengujian hewan ekstensif terhadap senyawa skandium belum dilakukan.[64] Tingkat median dosis letal (LD50) untuk skandium klorida untuk tikus telah ditentukan pada 755 mg/kg untuk pemberian intraperitoneal dan 4 g/kg untuk pemberian oral.[65] Mengingat hasil ini, senyawa skandium harus ditangani sebagai senyawa dengan toksisitas sedang. Skandium tampaknya ditangani oleh tubuh dengan cara yang mirip dengan galium, dengan bahaya serupa yang melibatkan hidroksidanya yang sulit larut.[66]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.