Loading AI tools
unsur kimia dengan lambang Kr dan nomor atom 36 Dari Wikipedia, ensiklopedia bebas
Kripton (dari bahasa Yunani Kuno: κρυπτός, translit. kryptos 'yang tersembunyi') adalah sebuah unsur kimia dengan lambang Kr dan nomor atom 36. Ia adalah sebuah gas mulia yang tidak berwarna, tidak berbau, dan tidak berasa yang terjadi dalam jumlah kecil di atmosfer dan sering digunakan dengan gas langka lainnya dalam lampu fluoresen. Kripton bersifat lengai secara kimiawi.
36Kr Kripton | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sifat umum | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pengucapan | /kripton/[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Penampilan | gas tak berwarna, akan menjadi putih bila diletakkan pada medan listrik bertegangan tinggi | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kripton dalam tabel periodik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nomor atom (Z) | 36 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Golongan | golongan 18 (gas mulia) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Periode | periode 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Blok | blok-p | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kategori unsur | gas mulia | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Berat atom standar (Ar) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Konfigurasi elektron | [Ar] 3d10 4s2 4p6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektron per kelopak | 2, 8, 18, 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sifat fisik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fase pada STS (0 °C dan 101,325 kPa) | gas | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titik lebur | 115,78 K (−157,37 °C, −251,27 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titik didih | 119,93 K (−153,415 °C, −244,147 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kerapatan (pada STS) | 3,749 g/L | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
saat cair, pada t.d. | 2,413 g/cm3[2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titik tripel | 115,775 K, 73,53 kPa[3] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titik kritis | 209,48 K, 5,525 MPa[4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kalor peleburan | 1,64 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kalor penguapan | 9,08 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kapasitas kalor molar | 5R/2 = 20,95[5] J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tekanan uap
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sifat atom | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bilangan oksidasi | 0, +1, +2 (jarang lebih dari 0; oksida tidak diketahui) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativitas | Skala Pauling: 3,00 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energi ionisasi | ke-1: 1350,8 kJ/mol ke-2: 2350,4 kJ/mol ke-3: 3565 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Jari-jari kovalen | 116±4 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Jari-jari van der Waals | 202 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lain-lain | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kelimpahan alami | primordial | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Struktur kristal | kubus berpusat muka (fcc) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kecepatan suara | (gas, 20 °C) 221 m·s−1 (cairan) 1120 m/s | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Konduktivitas termal | 9,43×10−3 W/(m·K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Arah magnet | diamagnetik[6] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Suseptibilitas magnetik molar | −28,8×10−6 cm3/mol (298 K)[7] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nomor CAS | 7439-90-9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sejarah | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Penemuan dan isolasi pertama | W. Ramsay dan M. Travers (1898) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotop kripton yang utama | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kripton, seperti gas mulia lainnya, digunakan dalam pencahayaan dan fotografi. Cahaya kripton memiliki banyak garis spektrum, dan plasma kripton berguna dalam laser gas bertenaga tinggi yang terang (laser ion dan eksimer kripton), yang masing-masing beresonansi dan memperkuat satu garis spektrum. Kripton fluorida juga membuat media laser yang berguna. Dari tahun 1960 hingga 1983, definisi resmi dari meter didasarkan pada panjang gelombang satu garis spektrum kripton-86, karena dayanya yang tinggi dan pengoperasian tabung lucutan kripton yang relatif mudah.
Kripton ditemukan di Britania Raya pada tahun 1898 oleh William Ramsay, seorang kimiawan Skotlandia, dan Morris Travers, seorang kimiawan Inggris, dalam residu yang tersisa dari penguapan hampir semua komponen udara cair. Neon ditemukan melalui prosedur serupa oleh pekerja yang sama hanya beberapa minggu kemudian.[9] William Ramsay kemudian dianugerahi Penghargaan Nobel Kimia tahun 1904 untuk penemuan serangkaian gas mulia, termasuk kripton.[10]
Pada tahun 1960, Biro Internasional untuk Ukuran dan Timbangan mendefinisikan meter sebagai 1.650.763,73 panjang gelombang cahaya yang dipancarkan dalam ruang hampa sesuai dengan transisi antara tingkat 2p10 dan 5d5 dalam isotop kripton-86.[11][12] Perjanjian ini menggantikan prototipe meter internasional tahun 1889, yang merupakan sebuah batang logam yang terletak di Sèvres. Ini juga menghapus definisi ångström tahun 1927 berdasarkan garis spektrum kadmium berwarna merah,[13] menggantikannya dengan 1 Å = 10−10 m. Definisi kripton-86 bertahan hingga konferensi Oktober 1983, yang mendefinisikan ulang meter sebagai jarak yang ditempuh cahaya dalam ruang hampa selama 1/299.792.458 detik.[14][15][16]
Kripton dicirikan oleh beberapa garis emisi tajam (ciri khas spektrum) dengan yang terkuat berwarna hijau dan kuning.[17] Kripton adalah salah satu produk fisi uranium.[18] Kripton padat berwarna putih dan memiliki struktur kristal kubus berpusat-muka, yang merupakan sifat umum dari semua gas mulia (kecuali helium, yang memiliki struktur kristal padat heksagon).[19]
Kripton alami di atmosfer Bumi terdiri dari lima isotop stabil, ditambah satu isotop (78Kr) dengan waktu paruh yang panjang (9,2×1021 tahun) sehingga dapat dianggap stabil. (Isotop ini memiliki waktu paruh terpanjang kedua yang diketahui di antara semua isotop yang mengalami peluruhan; ia mengalami penangkapan elektron ganda menjadi 78Se).[8][20] Selain itu, sekitar tiga puluh isotop dan isomer tidak stabil telah diketahui.[21] Sejumlah kecil 81Kr, sebuah nuklida kosmogenik yang dihasilkan oleh iradiasi sinar kosmik 80Kr, juga terdapat di alam: isotop ini bersifat radioaktif dengan waktu paruh 230.000 tahun. Kripton sangat bersifat volatil dan tidak bertahan dalam larutan di air dekat permukaan, tetapi 81Kr telah digunakan untuk menentukan usia air tanah lama (50.000–800.000 tahun).[22]
85Kr adalah gas mulia radioaktif yang lengai dengan waktu paruh 10,76 tahun. Ia diproduksi melalui fisi uranium dan plutonium, seperti dalam pengujian bom nuklir dan reaktor nuklir. 85Kr dilepaskan selama pemrosesan ulang batang bahan bakar dari reaktor nuklir. Konsentrasi 85Kr di Kutub Utara 30% lebih tinggi daripada di Kutub Selatan karena adanya pencampuran konvektif.[23]
Seperti halnya dengan gas mulia lainnya, kripton secara kimia sangat tidak reaktif. Sifat kimia kripton yang agak terbatas dalam keadaan oksidasi +2 sejajar dengan unsur tetangganya bromin dalam keadaan oksidasi +1; karena adanya kontraksi skandida, sulit untuk mengoksidasi unsur 4p menjadi keadaan oksidasi golongannya. Hingga tahun 1960-an, tidak ada senyawa gas mulia yang berhasil disintesis.[24]
Menyusul keberhasilan sintesis pertama senyawa xenon pada tahun 1962, sintesis kripton difluorida (KrF2) dilaporkan pada tahun 1963. Pada tahun yang sama, KrF4 dilaporkan oleh Grosse dkk.,[25] tetapi kemudian terbukti sebagai kesalahan identifikasi.[26] Dalam kondisi ekstrem, kripton akan bereaksi dengan fluorin untuk membentuk KrF2 menurut persamaan berikut:
Gas kripton dalam laser kripton fluorida akan mengabsorpsi energi dari sumber, menyebabkan kripton bereaksi dengan gas fluorin, menghasilkan eksipleks kripton fluorida, sebuah kompleks sementara dalam keadaan energi tereksitasi:[27]
Kompleks ini dapat mengalami emisi spontan atau terstimulasi, mengurangi keadaan energinya menjadi keadaan dasar metastabil, tetapi sangat repulsif. Kompleks keadaan dasar ini dengan cepat berdisosiasi menjadi atom yang tidak terikat:
Hasilnya adalah sebuah laser eksipleks yang memancarkan energi pada panjang gelombang 248 nm, dekat bagian ultraungu dari spektrum, sesuai dengan perbedaan energi antara keadaan dasar dan keadaan tereksitasi dari kompleks tersebut.[28]
Senyawa dengan kripton yang terikat pada atom selain fluorin juga telah ditemukan. Terdapat pula laporan yang belum diverifikasi mengenai garam barium dari asam okso kripton.[30] Ion poliatomik ArKr+ dan KrH+ telah diselidiki dan terdapat bukti mengenai adanya KrXe atau KrXe+.[31]
Reaksi KrF2 dengan B(OTeF5)3 akan menghasilkan sebuah senyawa tidak stabil, Kr(OTeF5)2, yang mengandung ikatan kripton–oksigen. Ikatan kripton–nitrogen ditemukan dalam kation [HC≡N–Kr–F]+, yang dihasilkan oleh reaksi KrF2 dengan [HC≡NH]+[AsF−6] di bawah suhu −50 °C.[32][33] HKrCN dan HKrC≡CH (kripton hidrida-sianida dan hidrokriptoasetilena) dilaporkan stabil hingga suhu 40 K.[24]
Kristal kripton hidrida (Kr(H2)4) dapat terbentuk pada tekanan di atas 5 GPa. Mereka memiliki struktur kubus berpusat-muka di mana oktahedra kripton dikelilingi oleh molekul hidrogen yang berorientasi acak.[29]
Bumi telah mempertahankan semua gas mulia yang ada pada saat pembentukannya kecuali helium. Konsentrasi kripton di atmosfer ialah sekitar 1 ppm. Ia dapat diekstraksi dari udara cair melalui distilasi fraksional.[34] Jumlah kripton di luar angkasa tidak pasti, karena pengukurannya berasal dari aktivitas meteorik dan angin surya. Pengukuran pertama menunjukkan kelimpahan kripton di luar angkasa.[35]
Beberapa garis emisi kripton membuat lucutan gas kripton terionisasi tampak keputihan, yang pada gilirannya membuat bohlam berbasis kripton berguna dalam fotografi sebagai sumber cahaya putih. Kripton digunakan dalam beberapa lampu blitz fotografis untuk fotografi kecepatan tinggi. Gas kripton juga digabungkan dengan raksa untuk membuat tanda bercahaya yang bersinar dengan cahaya biru kehijauan yang terang.[36]
Kripton dicampur dengan argon dalam lampu fluoresen hemat energi, mengurangi konsumsi daya, tetapi juga mengurangi keluaran cahaya dan menaikkan biaya.[37] Kripton memiliki harga sekitar 100 kali lipat dari argon. Kripton (bersama dengan xenon) juga digunakan untuk mengisi lampu pijar untuk mengurangi penguapan filamen dan memungkinkan suhu operasional yang lebih tinggi.[38]
Lucutan kripton yang berwarna putih terkadang digunakan sebagai efek artistik dalam tabung "neon" lucutan gas. Kripton menghasilkan daya cahaya yang jauh lebih tinggi daripada neon di wilayah garis spektrum merah, dan karena alasan ini, laser merah untuk pertunjukan sinar laser berkekuatan tinggi sering kali merupakan laser kripton dengan cermin yang memilih garis spektrum merah untuk amplifikasi dan emisi laser, alih-alih varietas helium–neon yang lebih familiar, yang tidak dapat mencapai output multi-watt yang sama.[39]
Laser kripton fluorida penting dalam penelitian energi fusi nuklir dalam percobaan pengurungan. Laser ini memiliki keseragaman sinar yang tinggi, panjang gelombang yang pendek, dan ukuran titiknya dapat divariasikan untuk melacak pelet yang meledak.[40]
Dalam fisika partikel eksperimental, kripton cair digunakan untuk membangun kalorimeter elektromagnetik kuasi-homogen. Salah satu contoh pentingnya adalah kalorimeter pada percobaan NA48 di CERN yang mengandung sekitar 27 ton kripton cair. Penggunaan ini jarang terjadi, karena argon cair lebih murah. Keunggulan kripton adalah jari-jari Molière-nya yang lebih kecil yaitu sebesar 4,7 cm, yang memberikan resolusi spasial yang sangat baik dengan sedikit tumpang tindih. Parameter lain yang relevan untuk kalorimetri adalah: panjang radiasi sebesar X0=4,7 cm, dan kepadatan sebesar 2,4 g/cm3.
Kripton-83 memiliki aplikasi dalam pencitraan resonansi magnetik (MRI) untuk pencitraan saluran udara. Secara khusus, ia memungkinkan ahli radiologi untuk membedakan antara permukaan hidrofobik dan hidrofilik yang mengandung sebuah jalan napas.[41]
Meskipun xenon berpotensi untuk digunakan dalam tomografi terkomputasi (CT) untuk menilai ventilasi regional, sifat anestesinya membatasi fraksinya dalam gas pernapasan hingga 35%. Campuran pernapasan 30% xenon dan 30% kripton sebanding dalam efektivitas CT dengan fraksi xenon 40%, sambil menghindari efek yang tidak diinginkan dari tekanan parsial gas xenon yang tinggi.[42] Isotop metastabil kripton-81m digunakan dalam kedokteran nuklir untuk pemindaian ventilasi/perfusi paru-paru, di mana ia dihirup dan dicitrakan dengan sebuah kamera gama.[43] Kripton-85 di atmosfer telah digunakan untuk mendeteksi fasilitas pemrosesan ulang bahan bakar nuklir rahasia di Korea Utara[44] dan Pakistan.[45] Fasilitas tersebut terdeteksi pada awal tahun 2000-an dan diyakini memproduksi plutonium tingkat senjata. Kripton-85 adalah sebuah produk fisi berumur sedang sehingga akan lolos dari bahan bakar bekas saat kelongsongnya dilepas.[46]
Kripton kadang-kadang digunakan sebagai gas penginsulasi di antara panel jendela.[47] Starlink milik SpaceX menggunakan kripton sebagai propelan untuk sistem propulsi elektriknya.[48]
Kripton dianggap sebagai asfiksia yang tidak beracun.[49] Menjadi lipofilik, kripton memiliki efek anestesi yang signifikan (walaupun mekanisme fenomena ini masih belum sepenuhnya jelas,[50] terdapat bukti kuat bahwa kedua sifat tersebut terkait secara mekanis), dengan potensi narkotika tujuh kali lebih besar daripada udara, dan menghirup atmosfer yang terdiri dari 50% kripton dan 50% udara alami (seperti yang mungkin terjadi di lokasi kebocoran) akan menyebabkan narkosis pada manusia yang mirip dengan menghirup udara pada tekanan atmosfer empat kali lipat. Ini sebanding dengan selam skuba pada kedalaman 30 m (100 ft) dan dapat memengaruhi siapa saja yang menghirupnya.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.