Loading AI tools
From Wikipedia, the free encyclopedia
In six-dimensional geometry, a runcinated 6-cube is a convex uniform 6-polytope with 3rd order truncations (runcination) of the regular 6-cube.
6-cube |
Runcinated 6-cube |
Biruncinated 6-cube |
Runcinated 6-orthoplex |
6-orthoplex |
Runcitruncated 6-cube |
Biruncitruncated 6-cube |
Runcicantellated 6-orthoplex |
Runcicantellated 6-cube |
Biruncitruncated 6-orthoplex |
Runcitruncated 6-orthoplex |
Runcicanti-truncated 6-cube |
Biruncicanti-truncated 6-cube |
Runcicanti-truncated 6-orthoplex | |
Orthogonal projections in B6 Coxeter plane |
---|
There are 12 unique runcinations of the 6-cube with permutations of truncations, and cantellations. Half are expressed relative to the dual 6-orthoplex.
Runcinated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t0,3{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 7680 |
Vertices | 1280 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Biruncinated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t1,4{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 11520 |
Vertices | 1920 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Runcitruncated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t0,1,3{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 17280 |
Vertices | 3840 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Biruncitruncated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t1,2,4{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 23040 |
Vertices | 5760 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Runcicantellated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t0,2,3{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 13440 |
Vertices | 3840 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Runcicantitruncated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t0,1,2,3{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 23040 |
Vertices | 7680 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
Biruncitruncated 6-cube | |
Type | Uniform 6-polytope |
Schläfli symbol | t1,2,3,4{4,3,3,3,3} |
Coxeter-Dynkin diagram | |
4-faces | |
Cells | |
Faces | |
Edges | 23040 |
Vertices | 5760 |
Vertex figure | |
Coxeter group | B6 [4,3,3,3,3] |
Properties | convex |
Coxeter plane | B6 | B5 | B4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [12] | [10] | [8] |
Coxeter plane | B3 | B2 | |
Graph | |||
Dihedral symmetry | [6] | [4] | |
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry | [6] | [4] |
These polytopes are from a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.