在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。
事实速览 群论, 基本概念 ...
群论
|
|
群
|
无限维群
|
共形群 微分同胚群
环路群
量子群 O(∞) SU(∞) Sp(∞)
|
|
|
关闭
令循环群 。如果存在两个相異整数 使得 ,那么 满足 ,其中 是單位元。所以对於任意整数 ,,其中 是 除以 得到的余数,。这说明 是有限群。设 是所有这样的正整数中最小的一个,则 可以表示为:
可以证明它同构于模 的加法群 。事实上,對每一個正整數 ,都存在唯一一個(在同构的意义上)阶為此正整數 的循環群。而所有的 阶循環群都和模 的同余类构成的加法群 同构。如果一个循环群的阶是无限的,那么它同构于整數关于加法构成的群 。因此,循環群已被完全分类,是最簡單的一种群。
例如,,則 為循環群。 同構於模 的加法群:。考虑映射:
-
可以证明其为群同态,而且是双射,因此是群同构。
每一個循環群要么同構于整数模 的加法群:,要么同构于整數的加法群 。因此要研究循环群的性质,只需要研究 和 作为加法群的性质即可。设 是一个 阶的循環群[N 1],,则:
- 為交換群。這是因為 。
- 若 為正整数,則 ,因為 。而且 是所有使得 的正整数 中最小的一个。
- 若 為無限大,則 有且仅有兩個生成元,分别对应于整数中的 和 。
- 若 為正整数,则 的各个生成元分别对应整数模 加法群中与 互质的数的同余类。例如当 时, 的生成元有四个,分别对应着 中的四个同余类。
- 的每一個子群都是循環群。每一個 的 阶有限子群皆為整数模 的加法群。而每一個 的無限子群都可以表示成 ,同構於 。
- 设 是質數,則阶為 的群都同构于 阶循環群。
- 兩個循環群的直積 是循環群若且唯若 和 互質。故 同構於 ,而不是 [N 2]。
- 阿貝爾群的基本定理说明每一個有限生成阿貝爾群都是有限多個循環群的直積。
有限循環群的環圖全是有著其元素在各個角上的 邊形。下面環圖中的黑角表示是單位元素,而其他的角則為群的其他元素。一個環包括著連接著單位元之元素的接續之次方。
n也可以是無限大,约定“n为无穷大”代表群同构于整数加法群。
和的直積并不是一个循环群。
Stallings, John, Groups of cohomological dimension one, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVIII, New York, 1968), Providence, R.I.: Amer. Math. Soc.: 124–128, 1970, MR 0255689. 特別見p. 126: "If G has two ends, the explicit structure of G is well known: G is an extension of a finite group by either the infinite cyclic group or the infinite dihedral group."
Alonso, J. M.; Brady, T.; Cooper, D.; Ferlini, V.; Lustig, M.; Mihalik, M.; Shapiro, M.; Short, H., Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste, 1990) (PDF), River Edge, NJ: World Scientific, Corollary 3.6, 1991 [2014-04-01], MR 1170363, (原始内容 (PDF)存档于2013-04-25)
- Gallian, Joseph, Contemporary abstract algebra 4th, Boston: Houghton Mifflin, 1998, ISBN 978-0-669-86179-2 (英语), especially chapter 4.
- Herstein, I. N., Abstract algebra 3rd, Prentice Hall, 1996, ISBN 978-0-13-374562-7, MR1375019, especially pages 53–60.