Loading AI tools
沿連續線的數量 来自维基百科,自由的百科全书
在數學中,實數(英語:real number)是有理數和無理數的總稱,前者如、、;後者如、等。實數可以直觀地看作小數(有限或無限的),它們能把數軸「填滿」。但僅僅以枚舉的方式不能描述實數的全體。實數和虛數共同構成複數。
此條目沒有列出任何參考或來源。 (2018年8月13日) |
各式各樣的數 |
基本 |
延伸 |
其他 |
根據日常經驗,有理數集在數軸上似乎是「稠密」的,於是古人一直認為用有理數即能滿足測量上的實際需要。以邊長為公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於公分),總可以用有理數來表示足夠精確的測量結果(比如公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:
正因如此,畢達哥拉斯本人甚至有「萬物皆數」的信念,這裡的數是指自然數(),而由自然數的比就得到所有正有理數,而有理數集存在「縫隙」這一事實,對當時很多數學家來說可謂極大的打擊;見第一次數學危機。
從古希臘一直到17世紀,數學家們才慢慢接受無理數的存在,並把它和有理數平等地看作數;後來有虛數概念的引入,為加以區別而稱作「實數」,意即「實在的數」。在當時,儘管虛數已經出現並廣為使用,實數的嚴格定義卻仍然是個難題,以至函數、極限和收斂性的概念都被定義清楚之後,才由十九世紀末的戴德金、康托爾等人對實數進行了嚴格處理。
所有實數的集合則可稱為實數系(real number system)或實數連續統。任何一個完備的阿基米德有序域均可稱為實數系。在保序同構意義下它是惟一的,常用表示。由於是定義了算數運算的運算系統,故有實數系這個名稱。[1]
在目前的初等數學中,沒有對實數進行嚴格的定義,而一般把實數看作小數(有限或無限的)。實數的完備性可以利用幾何加以說明,即數軸上的點與實數一一對應;見數軸。
實數可以分為有理數(如、)和無理數(如、),或者代數數和超越數(有理數都是代數數)兩類。實數集合通常用字母或表示。而表示維實數空間。實數是不可數的。實數是實分析的核心研究對象。
實數可以用來測量連續變化的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後位,為正整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。
實數是一個集合,通常可以分為正數、負數和零()三類。「正數」(符號:)即大於的實數,而「負數」(符號:)即小於的實數。與實數一樣,兩者都是不可數的無限集合。正數的相反數一定是負數,負數的相反數也一定是正數。除正數和負數外,通常將與正數統稱為「非負數」(符號:),而將與負數統稱為「非正數」(符號:)。這和整數可以分為正整數、負整數和零(),而與正整數通常統稱為非負整數、與負整數則通常統稱為非正整數非常相似。另外,只有實數可以分為正和負等,虛數是沒有正負之分的。
在公元前500年左右,以畢達哥拉斯為首的希臘數學家們認識到有理數在幾何上不能滿足需要,但畢達哥拉斯本身並不承認無理數的存在。 直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。
實數可以用通過收斂於一個唯一實數的十進制或二進制展開如所定義的序列的方式而構造為有理數的完備化。實數可以不同方式從有理數構造出來。這裡給出其中一種,其他方法請詳見實數的構造。
設 是所有實數的集合,則:
最後一條是區分實數和有理數的關鍵。例如所有平方小於的有理數的集合存在有理數上界,如;但是不存在有理數上確界(因為不是有理數)。
實數通過上述性質唯一確定。更準確的說,給定任意兩個戴德金完備的有序域 和 ,存在從 到 的唯一的域同構,即代數學上兩者可看作是相同。
在實數域內,可實現的基本運算有加、減、乘、除、乘方等,對非負數還可以進行開方運算。實數加、減、乘、除(除數不為零)、平方後結果還是實數。任何實數都可以開奇次方,結果仍是實數;只有非負實數才能開偶次方,其結果還是實數。
作為度量空間或一致空間,實數集合是一個完備空間,它有以下性質:
有理數集合就不是完備空間。例如,是有理數的柯西序列,但沒有有理數極限。實際上,它有個實數極限。實數是有理數的完備化:這亦是構造實數集合的一種方法。
實數集合通常被描述為「完備的有序域」,這可以幾種解釋。
實數集構成一個度量空間:和間的距離定為絕對值 。作為一個全序集,它也具有序拓撲。這裡,從度量和序關係得到的拓撲相同。實數集又是一維的可縮空間(所以也是連通空間)、局部緊緻空間、可分空間、貝爾空間。但實數集不是緊緻空間。這些可以通過特定的性質來確定,例如,無限連續可分的序拓撲必須和實數集同胚。以下是實數的拓撲性質總覽:
實數集可以在幾種不同的方面進行擴展和一般化:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.