最简单的烯烃是乙烯(C2H4),国际纯化学和应用化学联合会命名为ethene。乙烯是工业上生产规模最大的有机化合物[5]。
“烯”字是新造字,左边的火取自“碳”字,代表可以燃烧;右边的希取自“稀”字,表示氢原子和化合价稀少之意,意味着烯是烷(完整)烃的一类不饱和衍生物。
乙烯的结构
根据价层电子对互斥理论,乙烯中每一个双键碳原子的键角都约是120°。这个角度会受连接在双键碳原子上的官能团的交互作用产生的范德瓦耳斯力(凡得瓦力)影响。比如,C-C-C 键角在丙烯中为123.9°。烯烃的碳-碳双键键能比单键高,133pm的键长也比单个共价键短。
如同单个共价键,双键也能被描述为原子轨道的重叠。与单键不同的是,单键只包含一个σ键,而碳-碳双键包含了一个σ键和一个π键。
每一个双键碳原子利用它本身的三个sp2混成轨域与三个原子形成σ键,那一个未混成的"2p"轨域,垂直于由三个sp2混成轨域形成的平面,重叠形成π键。
因为需要很多的能量才能破坏π键(对于乙烯是264 千焦/莫尔),所以碳-碳双键间的转动很困难并严重受限。结果是取代烯烃存在一个或两个异构物(顺式异构和反式异构)。例如顺-2-丁烯中的两个甲基取代在双键的同一侧,而反-2-丁烯的在不同的侧面。
双键不可能被扭曲。事实上,一个90°的扭曲需要的能量约等于键键能的一半。p轨道之间的偏差与预期的要小,因为形成了三角形平面。反-环辛烯是不稳定的,轨道误差仅仅是19°,二面角137°(正常应该是120°),并且还有18°锥形化。这解释了为什么这个化合物有0.8 D的偶极矩(顺式为0.4 D,预期均应该为零)。反式环庚烷只能在低温下稳定存在。
物理性质
烯烃的物理性质可以与烷烃对比。物理状态决定于分子质量。简单的烯烃中,乙烯、丙烯和丁烯是气体(C2~C4烯烃为气体),含有五至十八个碳原子的直链烯烃是液体(C5~C18为易挥发液体),更高级的烯烃则是蜡状固体(C19以上固体)。在正构烯烃中,随著相对分子质量的增加,沸点升高。同碳数正构烯烃的沸点比带支链的烯烃沸点高。相同碳架的烯烃,双键由链端移向链中间,熔点、沸点都有所增加。烯烃为非极性化合物,其唯一的分子间作用力为分散力,因此烯烃不溶于水,但可溶于四氯化碳等有机溶剂。液体烯类之密度小于水,会浮在水面上。反式烯烃比顺式烯烃的沸点低,而熔点高,这是因反式异构体极性小,对称性好。与相应的烷烃相比,烯的沸点、折射率,水中溶解度,相对密度等都比烷的略小些。其密度比水小。
化学性质
烯烃的化学性质比较稳定,但比烷烃活泼。与乙烯相似,可使KMnO₄酸性溶液褪色,考虑到烯烃中的碳-碳双键比烷烃中的碳-碳单键强,所以大部分烯烃的反应都有双键的断开并形成两个新的单键。
合成
- CH3CH2OH + H2SO4 → CH3CH2OSO3H + H2O → H2C=CH2 + H2SO4
- 其他醇的消去反应都是Chugaev消去反应和Grieco消去反应,产生烯烃。
反应
烯烃因为可以广泛参与石化工业的反应,被誉为石化工业的原材料。
烯烃能进行很多种加成反应:
大部分的烯烃加成反应是依照亲电加成机理完成的。一个例子就是Prins反应,其中羰基是亲电试剂。
- RCH=CH2 + HX → RCHX-CH3
- RCH=CH2 + H2O → RCHOH-CH3
- 与卤素X2反式加成:
- RCH=CH2 + X2 → RCHX-CH2X
- 与次卤酸HOX加成:
- RCH=CH2 + X-OH → RCHOH-CH2X
烯烃经催化氢化可得到相应的烷烃。这种反应需要在高压环境下由金属催化剂参与进行。一般工业催化剂包含了镍、钯和铂。实验室合成中,Raney镍是常用催化剂。一个例子就是乙烯催化加氢得到乙烷:
- CH2=CH2 + H2 → CH3-CH3
烯烃在酸(常用硫酸或磷酸)的催化作用下,与水直接加成生成醇。酸催化下,烯烃的直接水合是亲电加成反应。反应的第一步是酸中的质子加到双键碳原子上,生成碳正离子中间体,这一步是控制反应速率的慢步骤。然后水分子与碳正离子反应,生成质子化的醇。最后质子化的醇失去质子生成醇。不对称烯烃与水的加成也遵循马氏规则。例如:
- CH2=CH2 + HOH → CH3-CH2-OH (H3PO4,280-300℃,7-8MPa)
- CH3-CH=CH2 + HOH → CH3CHOHCH3 (H3PO4,195℃,2MPa)
烯烃与溴或者氯的加成得到邻二溴或二氯烷烃。氟,因为反应太剧烈,过程中放出大量的热,容易使烯烃分解,所以反应需在特定条件下进行。氯,溴,容易发生加成反应,但是一般具有很强的立体选择性,生成反式产物。碘,活泼性太低,通常不能直接反应。溴水的褪色可以作为检验乙烯的测试:
- CH2=CH2 + Br2 → BrCH2-CH2Br
- 以下是此反应机理:
- 此反应之所以能够发生,是因为双键的高电子云密度导致了溴-溴间电子的临时移动产生一个临时的偶极,最终导致靠近双键的溴略显正电性变为亲电试剂。
- CH3-CH=CH2 + HBr → CH3-CHBr-CH3
- 如果两个双键碳原子连接的氢原子数量不等,卤素将优先加成在拥有氢较少的碳上(Markovnikov's规则)
- 以下是反应机理:
烯烃与次卤酸(常用次氯酸或次溴酸)加成生成β-卤代醇。例如:
- CH2=CH2 + HOCl → CH2ClCH2OH
在实际生产中,由于次氯酸不稳定,常用氯和水直接反应。例如,将乙烯和氯气直接通入水中以生产β-氯乙醇。这时反应的第一步是烯烃与氯气进行加成,生成环状氯𬭩离子中间体。在第二步反应中,由于大量水的存在,水进攻氯𬭩离子生成β-氯乙醇。但溶液中还有氯离子存在,它进攻氯𬭩离子,故有副产物1,2-二氯乙烷生成。
不对称烯烃与次卤酸的加成,也遵循马氏规则。亲电试剂的氯加到含氢较多的双键碳原子上,水加到含氢较少的双键碳原子上。例如:
- CH3CH=CH2 + HOCl → CH3CHOHCH2Cl
和烯烃与卤化氢的加成相似,烯烃与硫酸的加成也是离子型的亲核加成。例如,将乙烯通入冷的浓硫酸中,首先质子加到一个双键碳原子上,生成碳正离子中间体,然后硫酸氢负离子与之结合,生成硫酸氢乙酯:
- CH2=CH2 + HOSO2OH → CH3-CH2-OSO2OH
因为硫酸拥有两个活泼氢原子,所以在一定条件下可与两分子乙烯进行加成,生成硫酸二乙酯(中性硫酸酯):
- CH2=CH2 + HOSO2OH + CH2=CH2 → CH3CH2OSO2OCH2CH3
不对称烯烃与硫酸的加成反应,也符合马氏规则。例如(括号内为反应温度及硫酸浓度):
- CH3CH=CH2 + HOSO2OH → CH3CH(OSO2OH)CH3 (50℃,75-85%)
- (CH3)2C=CH2 + HOSO2OH → (CH3)3COSO2OH (10-30℃,50-65%)
上述反应说明,烯烃对反应条件和硫酸浓度的要求,随着烯烃双键碳原子上连接的甲基增多而降低,即烯烃的活性和烯烃与卤素、卤化氢的加成活性相同。
若将C12至C18的直链α-烯烃与硫酸反应,再将生成的酸性硫酸酯用碱中和,则会得到一种硫酸酯盐型阴离子表面活性剂,可作为液体洗涤剂的原料,也可用作纺织助剂:
- R-CH=CH2 + HOSO2OH → R-CH(OSO2OH)CH3
- R-CH(OSO2OH)CH3 + NaOH → R-CH(OSO2ONa)CH3 + H2O
烯烃可以被许多氧化剂所氧化。
- R1-CH=CH-R2 + O3 → R1-CHO + R2-CHO + H2O
- 这个反应可以用来测定未知烯烃的双键位置。
3CH2=CH2+2KMnO4+4H2O→2MnO2+2KOH+3HO-CH2-CH2-OH
烯烃的聚合反应是一个经济意义极高的反应,得到的高聚物有很高的工业价值,例如塑料中的聚乙烯和聚丙烯,合成润滑油中的聚a-烯烃。聚合反应既可以通过自由基机理来实现,又可以通过离子机理来实现。
烯烃的命名
根据IUPAC命名规则,为了给烯烃主链命名。英文命名将中缀-an-换为-en-。例如CH3-CH3 是ethane。因此 CH2=CH2的名字是ethene。中文命名是直接将“烷”变为“烯”,例如CH3-CH3是乙烷,因此CH2=CH2的名字是乙烯。
在高级烯烃中,因为双键位置不同而导致异构体的出现,我们运用下面的数字系统:
- 命名含有双键的最长碳链为主链,使得双键碳原子的数字尽可能最小。
- 用第一个双键碳原子指出双键的位置。
- 对照烷烃那样命名取代烯烃或支链。
- 首先是给碳原子标号,按顺序注明取代基团,双键和主链的名字。
CH3CH2CH2CH2CH==CH2 |
CH3 |
CH2CH3 |
尽管IUPAC命名系统有很高的通用性和精确性,但是一些烯烃的一般名称已经被广泛接受。 例如:
(CH3)2C=CH2 | |
IUPAC 名称: | 2-甲基丙烯 |
一般名称: | 异丁烯 |
参考资料
参见
命名法外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.