在电磁学 里,有两种偶极子 (英语 :Dipole):
电偶极子 是两个分隔一段距离,电量 相等,正负相反的电荷 。
磁偶极子 是一圈封闭循环的电流 。例如一个有常定电流 运行的线圈。
地球磁场 可以近似为一个磁偶极子的磁场。但是,图内的 N 和 S 符号分别标示地球的地理北极 和地理南极 。这标示法很容易引起困惑。实际而言,地球的磁偶极矩的方向,是从地球位于地理北极附近的地磁北极 ,指向位于地理南极附近的地磁南极 ;而磁偶极子的方向则是从指南极 指向指北极 。
电极偶子的等值线图。等值曲面清楚地区分于图内。
偶极子的性质可以用它的偶极矩 描述。
电偶极矩(
p
{\displaystyle \mathbf {p} }
)由负电荷指向正电荷,大小等于正电荷量乘以正负电荷之间的距离。磁偶极矩(
m
{\displaystyle \mathbf {m} }
)的方向,根据右手法则 ,是大拇指从载流回路的平面指出的方向,而其它手指则指向电流运行方向,磁偶极矩的大小等于电流乘以线圈面积。
除了载流回路以外,电子 和许多基本粒子 都拥有磁偶极矩。它们都会产生磁场 ,与一个非常小的载流回路产生的磁场完全相同。但是,现时大多数的科学观点认为这个磁偶极矩是电子的自然性质,而非由载流回路生成。
永久磁铁 的磁偶极矩来自于电子内禀的磁偶极矩。长条形的永久磁铁称为条形磁铁,其两端称为指北极 和指南极 ,其磁偶极矩的方向是由指南极朝向指北极。这常规与地球的磁偶极矩恰巧相反:地球的磁偶极矩的方向是从地球的地磁北极 指向地磁南极 。地磁北极位于北极 附近,实际上是指南极,会吸引磁铁的指北极;而地磁南极位于南极 附近,实际上是指北极,会吸引磁铁的指南极。罗盘磁针的指北极会指向地磁北极;条形磁铁可以当作罗盘 使用,条形磁铁的指北极会指向地磁北极。
根据当前的观察结果,磁偶极子产生的机制只有两种,载流回路和量子力学 自旋 。科学家从未在实验里找到任何磁单极子 存在的证据。
很多分子 都拥有电偶极矩。这是因为正负电荷的不均匀分布。例如,
(正价) H-Cl (负价)
拥有永久电偶极矩的分子称为极化分子 。假若一个分子带有感应电偶极子,则称此分子被极化 。彼得·德拜 是最先研究分子的电偶极子的物理化学家。为了纪念他的贡献,电偶极矩的测量单位被命名为德拜 。
分子的电偶极子又分为以下三种(参阅分子间作用力 ):
永久电偶极子 :假若一个分子内的几个原子的电荷分布不均,电负性 差异很大,则电负性较大的原子会吸引电子更接近自己,因而使得所占据区域变得更具负性;另外电负性较小的原子的区域会变得更具正性。这样,正、负电荷中心始终不重合,就形成了永久电偶极子。
瞬时电偶极子 :有时候,电子会恰巧地比较集中于分子内的某一个区域,这偶发状况会产生暂时的电偶极子。
感应电偶极子 :当施加外电场于一个分子时,感应这外电场的作用,分子内部正常的电子云 形状会被改变,因而产生电偶极子。其伴随的电偶极矩等于外电场和极化性 的乘积。
常见的化学化合物在气态的电偶极矩,采用德拜 单位:[ 1]
这些数值可从相对电容率 的测量值计算求得。当分子因为对称性而使得浄电偶极矩被抵消,则设定电偶极矩为 0 。电偶极矩最大值在 10 到 11 这值域内。知道电偶极矩值,科学家可以推论分子的分子结构 。例如,数据显示出,二氧化碳是一个线性分子;而臭氧则不是。
从计算电偶极子所产生的电场的平均值,可以得到正确答案。设定以原点
O
{\displaystyle \mathbf {O} }
为圆心,半径为
b
{\displaystyle b}
的球体
V
{\displaystyle \mathbb {V} }
。电偶极子所产生于这球体的电场,其平均值为:
⟨
E
⟩
=
3
4
π
b
3
∫
V
E
d
3
r
=
3
4
π
b
3
∫
0
b
∫
0
2
π
∫
0
π
p
4
π
ϵ
0
r
3
(
2
cos
θ
r
^
+
sin
θ
θ
^
)
r
2
sin
θ
d
θ
d
ϕ
d
r
{\displaystyle \langle \mathbf {E} \rangle ={\frac {3}{4\pi b^{3}}}\int _{\mathbb {V} }\mathbf {E} \mathrm {d} ^{3}\mathbf {r} ={\frac {3}{4\pi b^{3}}}\int _{0}^{b}\int _{0}^{2\pi }\int _{0}^{\pi }{\frac {p}{4\pi \epsilon _{0}r^{3}}}(2\cos \theta {\hat {\mathbf {r} }}+\sin \theta {\hat {\boldsymbol {\theta }}})r^{2}\sin \theta \ \mathrm {d} \theta \mathrm {d} \phi \mathrm {d} r}
。
注意到球坐标单位向量与直角坐标单位向量之间的关系:
r
^
=
x
^
sin
θ
cos
ϕ
+
y
^
sin
θ
sin
ϕ
+
z
^
cos
θ
{\displaystyle {\hat {\mathbf {r} }}={\hat {\mathbf {x} }}\sin \theta \cos \phi +{\hat {\mathbf {y} }}\sin \theta \sin \phi +{\hat {\mathbf {z} }}\cos \theta }
、
θ
^
=
x
^
cos
θ
cos
ϕ
+
y
^
cos
θ
sin
ϕ
−
z
^
sin
θ
{\displaystyle {\hat {\boldsymbol {\theta }}}={\hat {\mathbf {x} }}\cos \theta \cos \phi +{\hat {\mathbf {y} }}\cos \theta \sin \phi -{\hat {\mathbf {z} }}\sin \theta }
。
将这两个关系式代入前面积分式,可以得到
⟨
E
⟩
{\displaystyle \langle \mathbf {E} \rangle }
=
3
p
16
π
2
ϵ
0
b
3
∫
0
b
∫
0
2
π
∫
0
π
1
r
3
{\displaystyle ={\frac {3p}{16\pi ^{2}\epsilon _{0}b^{3}}}\int _{0}^{b}\int _{0}^{2\pi }\int _{0}^{\pi }{\frac {1}{r^{3}}}}
[
3
sin
θ
cos
θ
cos
ϕ
x
^
{\displaystyle [3\sin \theta \cos \theta \cos \phi {\hat {\mathbf {x} }}}
+
3
sin
θ
cos
θ
sin
ϕ
y
^
{\displaystyle +3\sin \theta \cos \theta \sin \phi {\hat {\mathbf {y} }}}
+
(
2
cos
2
θ
−
sin
2
θ
)
z
^
]
{\displaystyle +(2\cos ^{2}\theta -\sin ^{2}\theta ){\hat {\mathbf {z} }}]}
r
2
sin
θ
d
θ
d
ϕ
d
r
{\displaystyle r^{2}\sin \theta \ \mathrm {d} \theta \mathrm {d} \phi \mathrm {d} r}
。
注意到这积分式的x-分量与y-分量都等于零,只剩下z-分量:
⟨
E
⟩
=
3
p
16
π
2
ϵ
0
b
3
∫
0
b
∫
0
2
π
∫
0
π
1
r
(
2
cos
2
θ
−
sin
2
θ
)
z
^
sin
θ
d
θ
d
ϕ
d
r
=
3
p
z
^
8
π
ϵ
0
b
3
∫
0
b
1
r
d
r
∫
0
π
(
2
sin
θ
cos
2
θ
−
sin
3
θ
)
d
θ
{\displaystyle {\begin{aligned}\langle \mathbf {E} \rangle &={\frac {3p}{16\pi ^{2}\epsilon _{0}b^{3}}}\int _{0}^{b}\int _{0}^{2\pi }\int _{0}^{\pi }{\frac {1}{r}}(2\cos ^{2}\theta -\sin ^{2}\theta ){\hat {\mathbf {z} }}\sin \theta \ \mathrm {d} \theta \mathrm {d} \phi \mathrm {d} r\\&={\frac {3p{\hat {\mathbf {z} }}}{8\pi \epsilon _{0}b^{3}}}\int _{0}^{b}{\frac {1}{r}}\ \mathrm {d} r\int _{0}^{\pi }(2\sin \theta \cos ^{2}\theta -\sin ^{3}\theta )\ \mathrm {d} \theta \end{aligned}}}
。
对于径向坐标
r
{\displaystyle r}
积分会得到
∫
0
b
1
r
d
r
=
−
∞
{\displaystyle \int _{0}^{b}{\frac {1}{r}}\ \mathrm {d} r=-\infty }
!
但对于天顶角
θ
{\displaystyle \theta }
积分则会得到
∫
0
π
(
2
sin
θ
cos
2
θ
−
sin
3
θ
)
d
θ
=
∫
0
π
(
2
sin
θ
cos
2
θ
−
sin
3
θ
)
d
θ
=
0
{\displaystyle \int _{0}^{\pi }(2\sin \theta \cos ^{2}\theta -\sin ^{3}\theta )\ \mathrm {d} \theta =\int _{0}^{\pi }(2\sin \theta \cos ^{2}\theta -\sin ^{3}\theta )\ \mathrm {d} \theta =0}
!
由此可知,从这运算无法得到
⟨
E
⟩
{\displaystyle \langle \mathbf {E} \rangle }
的正确值。这是因为电偶极子的电势有一个奇点 在它所处的位置(原点
O
{\displaystyle \mathbf {O} }
),电场的方程式并不完全正确。必须特别小心地计算,才能得到正确答案。应用向量恒等式
∮
S
ψ
d
S
=
∫
V
∇
ψ
d
V
{\displaystyle \oint _{\mathbb {S} }\psi \ \mathrm {d} \mathbf {S} =\int _{\mathbb {V} }\nabla \psi \ \mathrm {d} V}
,则作用于这球体
V
{\displaystyle \mathbb {V} }
的电场,其平均值为:
⟨
E
⟩
=
3
4
π
b
3
∫
V
E
d
3
r
=
−
3
4
π
b
3
∫
V
∇
ϕ
d
3
r
=
−
3
4
π
b
3
∮
S
ϕ
d
S
{\displaystyle \langle \mathbf {E} \rangle ={\frac {3}{4\pi b^{3}}}\int _{\mathbb {V} }\mathbf {E} \ \mathrm {d} ^{3}\mathbf {r} =-\ {\frac {3}{4\pi b^{3}}}\int _{\mathbb {V} }\nabla \phi \ \mathrm {d} ^{3}\mathbf {r} =-\ {\frac {3}{4\pi b^{3}}}\oint _{\mathbb {S} }\phi \ \mathrm {d} \mathbf {S} }
;
其中,
S
{\displaystyle \mathbb {S} }
是球体
V
{\displaystyle \mathbb {V} }
的表面。
将电势
ϕ
{\displaystyle \phi }
的方程式代入,注意到
d
S
=
r
^
b
2
sin
θ
d
θ
d
ϕ
{\displaystyle \mathrm {d} \mathbf {S} ={\hat {\mathbf {r} }}\ b^{2}\sin \theta \ \mathrm {d} \theta \mathrm {d} \phi }
,则可得到
⟨
E
⟩
=
−
3
(
4
π
)
2
b
ϵ
0
∮
S
[
∫
V
′
ρ
(
r
′
)
|
b
r
^
−
r
′
|
d
3
r
′
]
r
^
sin
θ
d
θ
d
ϕ
{\displaystyle \langle \mathbf {E} \rangle =-\ {\frac {3}{(4\pi )^{2}b\epsilon _{0}}}\oint _{\mathbb {S} }\left[\int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ')}{|b{\hat {\mathbf {r} }}-\mathbf {r} '|}}\ \mathrm {d} ^{3}\mathbf {r} '\right]{\hat {\mathbf {r} }}\ \sin \theta \ \mathrm {d} \theta \mathrm {d} \phi }
;
其中,
ρ
(
r
′
)
{\displaystyle \rho (\mathbf {r} ')}
是在源位置
r
′
{\displaystyle \mathbf {r} '}
的电荷密度 ,
V
′
{\displaystyle \mathbb {V} '}
是源积分体积,设定与
V
{\displaystyle \mathbb {V} }
相同,
r
^
{\displaystyle {\hat {\mathbf {r} }}}
是场位置的单位向量,从表面
S
{\displaystyle \mathbb {S} }
垂直往外指出。
场位置与源位置之间距离的倒数 以球谐函数
Y
ℓ
m
(
θ
,
ϕ
)
{\displaystyle Y_{\ell m}(\theta ,\phi )}
作多极展开 为
1
|
b
r
^
−
r
′
|
=
∑
ℓ
=
0
∞
∑
m
=
−
ℓ
ℓ
4
π
2
ℓ
+
1
r
′
ℓ
b
ℓ
+
1
Y
ℓ
m
∗
(
θ
′
,
ϕ
′
)
Y
ℓ
m
(
θ
,
ϕ
)
,
r
′
<
b
{\displaystyle {\frac {1}{|b{\hat {\mathbf {r} }}-\mathbf {r} '|}}=\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }{\frac {4\pi }{2\ell +1}}{\frac {r^{\prime \ell }}{b^{\ell +1}}}Y_{\ell m}^{*}(\theta ',\phi ')Y_{\ell m}(\theta ,\phi ),\qquad r'<b}
;
其中,
b
r
^
{\displaystyle b{\hat {\mathbf {r} }}}
与
r
′
{\displaystyle \mathbf {r} '}
的球坐标 分别为
(
b
,
θ
,
ϕ
)
{\displaystyle (b,\theta ,\phi )}
与
(
r
′
,
θ
′
,
ϕ
′
)
{\displaystyle (r',\theta ',\phi ')}
。
单位向量
r
^
{\displaystyle {\hat {\mathbf {r} }}}
以球谐函数表示为
r
^
=
x
^
sin
θ
cos
ϕ
+
y
^
sin
θ
sin
ϕ
+
z
^
cos
θ
=
x
^
[
−
2
π
3
(
−
Y
1
,
−
1
∗
+
Y
11
∗
)
]
+
y
^
[
−
2
π
3
(
−
Y
1
,
−
1
∗
−
Y
11
∗
)
]
+
z
^
4
π
3
Y
10
∗
{\displaystyle {\begin{aligned}{\hat {\mathbf {r} }}&={\hat {\mathbf {x} }}\sin \theta \cos \phi +{\hat {\mathbf {y} }}\sin \theta \sin \phi +{\hat {\mathbf {z} }}\cos \theta \\&={\hat {\mathbf {x} }}\left[-{\sqrt {\frac {2\pi }{3}}}(-Y_{1,-1}^{*}+Y_{11}^{*})\right]+{\hat {\mathbf {y} }}\left[-{\sqrt {\frac {2\pi }{3}}}(-Y_{1,-1}^{*}-Y_{11}^{*})\right]+{\hat {\mathbf {z} }}{\sqrt {\frac {4\pi }{3}}}Y_{10}^{*}\\\end{aligned}}}
。
应用球谐函数的正交归一性
∫
0
2
π
∫
0
π
Y
ℓ
′
m
′
∗
(
θ
,
ϕ
)
Y
ℓ
m
(
θ
,
ϕ
)
sin
θ
d
θ
d
ϕ
=
δ
ℓ
ℓ
′
δ
m
m
′
{\displaystyle \int _{0}^{2\pi }\int _{0}^{\pi }Y_{\ell 'm'}^{*}(\theta ,\phi )Y_{\ell m}(\theta ,\phi )\sin \theta \ \mathrm {d} \theta \mathrm {d} \phi =\delta _{\ell \ell '}\delta _{mm'}}
,
可以得到
⟨
E
⟩
{\displaystyle \langle \mathbf {E} \rangle }
与这球体的电偶极子
p
{\displaystyle \mathbf {p} }
之间的关系式:
⟨
E
⟩
=
−
1
4
π
b
3
ϵ
0
∫
V
′
r
′
ρ
(
r
′
)
d
3
r
′
=
−
p
4
π
b
3
ϵ
0
{\displaystyle \langle \mathbf {E} \rangle =-\ {\frac {1}{4\pi b^{3}\epsilon _{0}}}\int _{\mathbb {V} '}\mathbf {r} '\rho (\mathbf {r} ')\ \mathrm {d} ^{3}\mathbf {r} '=-\ {\frac {\mathbf {p} }{4\pi b^{3}\epsilon _{0}}}}
。
也就是说,
∫
V
E
d
3
r
=
−
p
3
ϵ
0
{\displaystyle \int _{\mathbb {V} }\mathbf {E} \ \mathrm {d} ^{3}\mathbf {r} =-\ {\frac {\mathbf {p} }{3\epsilon _{0}}}}
。
为了满足这性质,必需对于电偶极子
p
{\displaystyle \mathbf {p} }
所产生的电场
E
{\displaystyle \mathbf {E} }
,在其方程式内再添加一个项目:
E
=
1
4
π
ϵ
0
r
3
(
3
(
p
⋅
r
^
)
r
^
−
p
)
−
p
3
ϵ
0
δ
3
(
r
)
=
p
4
π
ϵ
0
r
3
(
2
cos
θ
r
^
+
sin
θ
θ
^
)
−
p
3
ϵ
0
δ
3
(
r
)
{\displaystyle {\begin{aligned}\mathbf {E} &={\frac {1}{4\pi \epsilon _{0}r^{3}}}\left(3(\mathbf {p} \cdot {\hat {\mathbf {r} }}){\hat {\mathbf {r} }}-\mathbf {p} \right)-{\frac {\mathbf {p} }{3\epsilon _{0}}}\delta ^{3}(\mathbf {r} )\\&={\frac {p}{4\pi \epsilon _{0}r^{3}}}(2\cos \theta {\hat {\mathbf {r} }}+\sin \theta {\hat {\boldsymbol {\theta }}})-{\frac {\mathbf {p} }{3\epsilon _{0}}}\delta ^{3}(\mathbf {r} )\end{aligned}}}
。
这样,在计算
⟨
E
⟩
{\displaystyle \langle \mathbf {E} \rangle }
时,就能够得到明确无误的答案。
试想一群粒子,数量为
N
{\displaystyle N}
,电荷量 和位置分别为
q
i
{\displaystyle q_{i}}
和
r
i
{\displaystyle \mathbf {r} _{i}}
,
i
=
1
,
2
,
…
,
N
{\displaystyle i=1,\,2,\,\dots ,\,N}
。例如,这个群集可能是一个分子,由电荷量为
−
e
{\displaystyle -e}
的电子,和电荷量为
e
Z
j
{\displaystyle eZ_{j}}
的原子核 所构成;其中,
Z
j
{\displaystyle Z_{j}}
是第
j
{\displaystyle j}
个原子核的原子序 。这个群集的电偶极子的量子算符
p
{\displaystyle {\mathfrak {p}}}
是
p
=
∑
i
=
1
N
q
i
r
i
{\displaystyle {\mathfrak {p}}=\sum _{i=1}^{N}\,q_{i}\,\mathbf {r} _{i}}
。
电介质
永电体
印度洋电偶极子 (Indian Ocean Dipole )
自旋磁矩 (spin magnetic moment )
轴多极矩 (Axial multipole moments )
圆柱多极矩 (Cylindrical multipole moments )
球多极矩
拉普拉斯展开式(位势论) (Laplace expansion (potential) )
勒让德多项式
Jackson, John David, Classical Electrodynamic 3rd., USA: John Wiley & Sons, Inc.: pp. 107–111145–150, 184–188, 1999, ISBN 978-0-471-30932-1