Распределение Пуассона

вероятностное распределение дискретного типа Из Википедии, свободной энциклопедии

Распределение Пуассона

Распределе́ние Пуассо́на — распределение дискретного типа случайной величины, представляющей собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Краткие факты Распределение Пуассона, Обозначение ...
Распределение Пуассона
ThumbФункция вероятности
ThumbФункция распределения
Обозначение
Параметры
Носитель
Функция вероятности
Функция распределения
Математическое ожидание
Медиана
Мода , - 1
Дисперсия
Коэффициент эксцесса
Дифференциальная энтропия
Производящая функция моментов
Характеристическая функция
Закрыть

Распределение Пуассона играет ключевую роль в теории массового обслуживания.

Определение

Суммиров вкратце
Перспектива

Выберем фиксированное число и определим дискретное распределение, задаваемое следующей функцией вероятности:

,

где

  • — количество событий,
  •  — математическое ожидание случайной величины (среднее количество событий за фиксированный промежуток времени),
  • обозначает факториал числа ,
  •  — основание натурального логарифма.

Тот факт, что случайная величина имеет распределение Пуассона с математическим ожиданием , записывается: или .

Моменты

Суммиров вкратце
Перспектива

Производящая функция моментов распределения Пуассона имеет вид:

,

откуда

,
.

Для момента -го порядка справедлива общая формула:

,

где . Фигурные же скобки обозначают числа Стирлинга второго рода.

А так как моменты и факториальные моменты линейным образом связаны, то часто для пуассоновского распределения исследуются именно факториальные моменты, из которых при необходимости можно вывести и обычные моменты.

Свойства распределения Пуассона

  • Сумма независимых пуассоновских случайных величин также имеет распределение Пуассона. Пусть . Тогда
.
  • Пусть , и . Тогда условное распределение при условии, что , биномиально. Более точно:
.
  • C увеличением распределение Пуассона стремится к распределению Гаусса со среднеквадратичным отклонением и сдвигом . Чтобы доказать это, нужно применить формулу Стирлинга для факториала, а затем воспользоваться разложением в ряд Тейлора в окрестности и тем, что в пределах пика распределения . Тогда получается
  • Производящая функция распределения Пуассона выглядит так:

Асимптотическое стремление к распределению

Суммиров вкратце
Перспектива

Довольно часто в теории вероятностей рассматривают не само распределение Пуассона, а последовательность распределений, асимптотически равных ему. Более формально, рассматривают последовательность случайных величин , принимающих целочисленные значения, такую что для всякого выполнено при .

Простейшим примером является случай, когда имеет биномиальное распределение с вероятностью успеха в каждом из испытаний.

Обратная связь с факториальными моментами

Рассмотрим последовательность случайных величин , принимающих целые неотрицательные значения. Если при и любом фиксированном (где  — факториальный момент), то для всякого при выполнено .

Как пример нетривиального следствия этой теоремы можно привести, например, асимптотическое стремление к распределения количества изолированных рёбер (двухвершинных компонент связности) в случайном -вершинном графе, где каждое из рёбер включается в граф с вероятностью .[1]

История

Работа Симеона Дени Пуассона «Исследования о вероятности приговоров в уголовных и гражданских делах»[2], в которой было введено данное распределение, была опубликована в 1837 году[3]. Примеры других ситуаций, которые можно смоделировать, применив это распределение: поломки оборудования, длительность исполнения ремонтных работ стабильно работающим сотрудником, ошибка печати, рост колонии бактерий в чашке Петри, дефекты в длинной ленте или цепи, импульсы счётчика радиоактивного излучения, количество забиваемых футбольной командой голов и др.[4]

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.