Remove ads
вероятностное распределение дискретного типа Из Википедии, свободной энциклопедии
Распределе́ние Пуассо́на — распределение дискретного типа случайной величины, представляющей собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.
Распределение Пуассона | |
---|---|
Обозначение | |
Параметры | |
Носитель | |
Функция вероятности | |
Функция распределения | |
Математическое ожидание | |
Медиана | |
Мода | , - 1 |
Дисперсия | |
Коэффициент эксцесса | |
Дифференциальная энтропия | |
Производящая функция моментов | |
Характеристическая функция |
Распределение Пуассона играет ключевую роль в теории массового обслуживания.
Выберем фиксированное число и определим дискретное распределение, задаваемое следующей функцией вероятности:
где
Тот факт, что случайная величина имеет распределение Пуассона с математическим ожиданием , записывается: или .
Производящая функция моментов распределения Пуассона имеет вид:
откуда
Для момента -го порядка справедлива общая формула:
где . Фигурные же скобки обозначают числа Стирлинга второго рода.
А так как моменты и факториальные моменты линейным образом связаны, то часто для пуассоновского распределения исследуются именно факториальные моменты, из которых при необходимости можно вывести и обычные моменты.
Довольно часто в теории вероятностей рассматривают не само распределение Пуассона, а последовательность распределений, асимптотически равных ему. Более формально, рассматривают последовательность случайных величин , принимающих целочисленные значения, такую что для всякого выполнено при .
Простейшим примером является случай, когда имеет биномиальное распределение с вероятностью успеха в каждом из испытаний.
Рассмотрим последовательность случайных величин , принимающих целые неотрицательные значения. Если при и любом фиксированном (где — -й факториальный момент), то для всякого при выполнено .
Для начала докажем общую формулу вычисления вероятности появления конкретного значения случайной величины через факториальные моменты. Пусть для некоторого известны все и при . Тогда
Изменяя порядок суммирования, это выражение можно преобразовать в
Далее, из известной формулы получаем, что при и то же выражение вырождается в при .
Тем самым доказано, что
Согласно лемме и условиям теоремы, при .
Как пример нетривиального следствия этой теоремы можно привести, например, асимптотическое стремление к распределения количества изолированных рёбер (двухвершинных компонент связности) в случайном -вершинном графе, где каждое из рёбер включается в граф с вероятностью .[1]
Работа Симеона Дени Пуассона «Исследования о вероятности приговоров в уголовных и гражданских делах»[2], в которой было введено данное распределение, была опубликована в 1837 году[3]. Примеры других ситуаций, которые можно смоделировать, применив это распределение: поломки оборудования, длительность исполнения ремонтных работ стабильно работающим сотрудником, ошибка печати, рост колонии бактерий в чашке Петри, дефекты в длинной ленте или цепи, импульсы счётчика радиоактивного излучения, количество забиваемых футбольной командой голов и др.[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.