Kula

wnętrze sfery, zbiór punktów o odległości od środka nieprzekraczającej promienia Z Wikipedii, wolnej encyklopedii

Kula – uogólnienie pojęcia koła na więcej wymiarów, zdefiniowane dla wszystkich przestrzeni metrycznych.

Szybkie fakty
Definicja intuicyjna
Kula to zbiór punktów oddalonych nie bardziej niż pewna zadana odległość (promień kuli) od wybranego punktu (środek kuli)[1].
Zamknij

Definicja formalna

Podsumowanie
Perspektywa

Kula w danej przestrzeni metrycznej zbiór elementów tej przestrzeni, zdefiniowany jako:

dla pewnych które nazywamy odpowiednio środkiem i promieniem kuli.

W wielu źródłach[2][3][4] tak zdefiniowany zbiór nazywany jest kulą domkniętą dla odróżnienia od zbioru określanego jako kula otwarta (inaczej kula bez brzegu) i definiowanego następująco:

Informacja ogólna

Podsumowanie
Perspektywa
Thumb
Kula w przestrzeni euklidesowej
Thumb
Kula o środku i promieniu w metryce Manhattan na zbiorze

Intuicyjnie rozumiana kula – w przestrzeni euklidesowej trójwymiarowej dla metryki euklidesowej – jest to część przestrzeni, ograniczona sferą (sfera jest powierzchnią (brzegiem) kuli i również się w niej zawiera).

Taką kulę można wówczas opisać wzorem jako zbiór punktów, których współrzędne spełniają nierówność:

gdzie są współrzędnymi środka kuli, a oznacza jej promień, natomiast w układzie współrzędnych sferycznych, dla środka znajdującego się w środku układu współrzędnych:

dla

W -wymiarowej przestrzeni euklidesowej wzór ten ma natychmiastowe uogólnienie – kula o środku w punkcie i promieniu to zbiór punktów których współrzędne spełniają nierówność:

Nietrudno zauważyć, że w dwuwymiarowej przestrzeni euklidesowej kulą jest koło, zaś w jednowymiarowej – odcinek.

Dla innych metryk kula wyglądać będzie inaczej. Przykładowo, w przestrzeni o metryce Manhattan do kuli należą punkty, spełniające nierówność:

Natomiast w przestrzeni liter alfabetu łacińskiego, gdzie metryką byłaby odległość między poszczególnymi literami w szyku alfabetu, kulą jest np. zbiór – promień tej kuli wynosi 1, a jej środkiem jest

Związane pojęcia

Cięciwa kuli to odcinek o końcach na brzegu kuli.

Średnica kuli to cięciwa przechodząca przez środek kuli. Termin ten oznacza również długość tej cięciwy – równą podwojonej długości promienia kuli. Termin ten został uogólniony na wszelkie zbiory w przestrzeni metrycznej (zobacz średnica zbioru).

Koło wielkie kuli to koło o promieniu tej kuli, o środku w środku kuli.

Wzory dla kuli w przestrzeni euklidesowej

  • Objętość -wymiarowej kuli (hiperkuli) o promieniu dana jest wzorem
  • „Pole” -wymiarowe jej (hiper)powierzchni
  • Objętość 3-wymiarowej kuli: [5]
  • Pole powierzchni 3-wymiarowej kuli: [5]

W powyższych wzorach jest jedną z najsłynniejszych stałych matematycznych, szerzej opisaną w artykule Pi, zaś oznacza funkcję gamma. Pomimo że funkcja gamma jest niezdefiniowana dla niedodatnich liczb całkowitych, uogólnione objętości i powierzchnie -wymiarowych hiperkul to funkcje holomorficzne wymiaru zespolonego . Są one zatem zdefiniowane w każdym wymiarze[6][7].

Uwaga: Brzegiem -wymiarowej kuli jest -wymiarowa sfera.

Uogólnienie topologiczne

W topologii kulę definiujemy jako rozmaitość topologiczną, homeomorficzną z kulą geometryczną, zdefiniowaną jak powyżej.

Zobacz też

Przypisy

Linki zewnętrzne

Wikiwand - on

Seamless Wikipedia browsing. On steroids.