Loading AI tools
wszystkie liczby na osi, wymierne lub nie Z Wikipedii, wolnej encyklopedii
Liczby rzeczywiste – uogólnienie liczb wymiernych na wszystkie liczby odpowiadające punktom na osi liczbowej[1], zwanej też prostą rzeczywistą. Liczby rzeczywiste pozwalają opisać wszelkie odległości, liczby do nich przeciwne oraz inne wielkości skalarne. Zbiór liczb rzeczywistych oznacza się symbolem [1] lub
Każdą liczbę rzeczywistą można zapisać ułamkiem dziesiętnym, przy czym nie musi on mieć takich własności, jak dla liczb wymiernych – może jednocześnie nie być skończony ani ostatecznie okresowy[1]. Ta odpowiedniość zachodzi też w drugą stronę – każdy ułamek dziesiętny nieskończony odpowiada jakiejś liczbie rzeczywistej, przez co takie ciągi cyfr mogą być użyte do definiowania liczb rzeczywistych[1].
Zrozumienie, że ułamki zwykłe – tj. stosunki dwóch liczb naturalnych – nie wystarczą do opisu niektórych długości, przyniosła starożytność[2]. Wtedy zakon Pitagorejczyków udowodnił, że pierwiastek kwadratowy z dwóch () jest niewymierny[3]. Czasy nowożytne przyniosły rozwój matematyki wyższej, a wraz z nią:
Za pomocą zbioru liczb rzeczywistych definiuje się:
Pitagorejczycy zauważyli, że przekątna kwadratu i jego bok są niewspółmierne, tj. nie istnieje odcinek, dla którego przekątna i bok byłyby naturalnymi wielokrotnościami. W dzisiejszym języku oznaczało to, że żadna liczba wymierna nie jest stosunkiem długości przekątnej kwadratu i jego boku (zob. dowód niewymierności pierwiastka z 2). Była to pierwsza wykryta niewymierność, pierwszą znaną klasyfikację niewymierności przeprowadził Teajtet.
Znana od czasów starożytnych liczba pi, którą definiuje się jako stosunek długości dowolnego okręgu do jego średnicy, także okazała się liczbą niewymierną – udowodnił to w roku 1767 Lambert. Każda wykryta niewymierność oznaczała tzw. lukę w zbiorze liczb wymiernych. Konstrukcja liczb rzeczywistych jest wypełnieniem wszystkich możliwych luk. Za pierwszą udaną konstrukcję liczb rzeczywistych uważa się teorię proporcji Eudoksosa opisaną w Elementach Euklidesa. Chociaż pierwszą formalną definicję liczb rzeczywistych zaproponował Richard Dedekind używając liczb wymiernych oraz wprowadzonych przez siebie przekrojów[6].
Zbiór liczb rzeczywistych można zdefiniować aksjomatycznie, jako ciało uporządkowane spełniające aksjomat ciągłości[potrzebny przypis]. Jest to struktura algebraiczna spełniającą następujące aksjomaty:
Ponieważ aksjomatyka nie gwarantuje istnienia obiektu spełniającego te aksjomaty, przeprowadza się konstrukcje liczb rzeczywistych biorące za punkt wyjścia liczby wymierne.
Istnieje kilka klasycznych sposobów konstrukcji zbioru liczb rzeczywistych:
Z punktu widzenia topologii zbiór liczb rzeczywistych to:
Naturalną metryką w zbiorze liczb rzeczywistych jest tzw. metryka euklidesowa, czyli wartość bezwzględna różnicy dwóch liczb. Prosta rzeczywista wyposażona w tę metrykę jest zupełną przestrzenią metryczną. Ponadto jest ona przestrzenią ośrodkową (ośrodkiem jest np. zbiór liczb wymiernych).
Rodzinę zbiorów otwartych (topologię) na prostej można określić definiując zbiory otwarte:
czyli zbiór jest otwarty, gdy wraz z każdym jego punktem zawiera pewien przedział otwarty zawierający ten punkt.
Bazą tej topologii jest np. rodzina przedziałów otwartych o końcach wymiernych. Wynika stąd, że liczby rzeczywiste spełniają drugi aksjomat przeliczalności. Przestrzeń rzeczywista jest ponadto spójna i lokalnie zwarta.
Ważnymi niestandardowymi topologiami określonymi na zbiorze liczb rzeczywistych są tzw. prosta Sorgenfreya i prosta Michaela.
Popularną, przybliżoną, komputerową reprezentacją liczby rzeczywistej jest liczba zmiennoprzecinkowa i typ zmiennoprzecinkowy. Najczęściej jest to implementacja standardu IEEE 754.
Liczby rzeczywiste mogą być reprezentowane również przez typ pozwalający obliczać ich przybliżenia z dowolną dokładnością, co umożliwia dokładną arytmetykę rzeczywistą[7][8].
Przykłady uogólnień liczb rzeczywistych to:
Poza oś rzeczywistą wykraczają także:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.