PTPN11(Protein-tyrosine phosphatase non-receptor type 11)またはSHP2(Src homology region 2 domain-containing phosphatase 2)は、ヒトではPTPN11遺伝子によってコードされている酵素である。PTP-1D(protein-tyrosine phosphatase 1D)、PTP-2C(protein-tyrosine phosphatase 2C)としても知られ、プロテインチロシンホスファターゼ(PTP)である[5][6]。
概要 PDBに登録されている構造, PDB ...
PTPN11 |
---|
|
PDBに登録されている構造 |
---|
PDB | オルソログ検索: RCSB PDBe PDBj |
---|
PDBのIDコード一覧 |
---|
2SHP, 3B7O, 3MOW, 3O5X, 3TKZ, 3TL0, 4DGP, 4DGX, 4GWF, 4H1O, 4JE4, 4JEG, 3ZM0, 3ZM1, 3ZM2, 3ZM3, 4H34, 4JMG, 4NWF, 4NWG, 4OHD, 4OHE, 4OHH, 4OHI, 4OHL, 4PVG, 4RDD, 4QSY, 5DF6, 5IBS, 5EHP, 5EHR, 5I6V, 5IBM |
|
|
識別子 |
---|
記号 | PTPN11, BPTP3, CFC, JMML, METCDS, NS1, PTP-1D, PTP2C, SH-PTP2, SH-PTP3, SHP2, protein tyrosine phosphatase, non-receptor type 11, protein tyrosine phosphatase non-receptor type 11 |
---|
外部ID | OMIM: 176876 MGI: 99511 HomoloGene: 2122 GeneCards: PTPN11 |
---|
|
|
|
|
オルソログ |
---|
種 | ヒト | マウス |
---|
Entrez | | |
---|
Ensembl | | |
---|
UniProt | | |
---|
RefSeq (mRNA) | | |
---|
RefSeq (タンパク質) | | |
---|
場所 (UCSC) | Chr 12: 112.42 – 112.51 Mb | Chr 12: 121.27 – 121.33 Mb |
---|
PubMed検索 | [3] | [4] |
---|
ウィキデータ |
|
閉じる
PTPN11はPTPファミリーに属する。PTPは、細胞増殖、細胞分化、有糸分裂サイクル、発がん性形質転換など、さまざまな細胞過程を調節するシグナル伝達分子であることが知られている。PTPN11は2つのタンデムなSH2ドメインを含んでおり、リン酸化チロシン結合ドメインとして基質との相互作用を媒介する。大部分の組織で広く発現しており、有糸分裂の活性化、代謝の制御、転写の調節、細胞遊走など、幅広い細胞機能に重要なシグナル伝達を調節する役割を果たす。この遺伝子の変異はヌーナン症候群や急性骨髄性白血病の原因となる[7]。
SHP2は、パラログであるSHP1(PTPN6(英語版))と同じく、N末端の2つのタンデムなSH2ドメインにPTPドメインが続くというドメイン構造をしている。不活性状態では、N末端のSH2ドメインがPTPドメインに結合して基質が活性部位へアクセスすることを防いでおり、自己阻害状態となっている。標的のリン酸化チロシン残基への結合に伴ってN末端のSH2ドメインはPTPドメインから解離し、自己阻害状態を解除することによって酵素を活性化する。
PTPN11遺伝子座のミスセンス変異はヌーナン症候群とLEOPARD症候群の双方と関係している。
また、メタコンドロマトーシスとも関係している[8]。
ヌーナン症候群
ヌーナン症候群の症例におけるPTPN11の変異は遺伝子のコーディング領域全体にわたって広く分布しているが、すべて過剰活性化型や調節異常型のSHP2タンパク質の産生をもたらすようである。これらの変異の大部分は、自己阻害型コンフォメーションの維持に必要な、N末端のSH2ドメインと触媒コアとの相互作用面を破壊するものである[9]。
LEOPARD症候群
LEPPARD症候群を引き起こす変異は酵素の触媒コアに影響を与える領域に限定されており、触媒活性が損なわれたSHP2タンパク質が産生される[10]。生化学的には反対の特徴を生じさせる変異が、ヌーナン症候群とLEPPARD症候群という類似した遺伝子疾患を引き起こす理由は今のところ明らかではない。
ヌーナン症候群を引き起こすPTPN11の変異の一部では、若年性骨髄単球性白血病の高い発病率も観察される。SHP2の活性化型変異は、神経芽細胞腫、悪性黒色腫、急性骨髄性白血病、乳がん、肺がん、大腸がんでも検出されている[11]。近年では、NPM1(英語版)変異型の急性骨髄性白血病患者のコホート研究において、比較的高いPTPN11変異の保有率(24%)がみられることが次世代シーケンシングによって検出されている[12]。しかし、こうした関係が予後に与える重要性は明確にはされていない。こうしたデータはSHP2ががん原遺伝子である可能性を示唆している。一方で、PTPN11/SHP2が腫瘍形成の促進因子と抑制因子のいずれとしても作用しうることが報告されている[13]。老齢マウスモデルでは、肝細胞特異的なPTPN11/SHP2の欠失はSTAT3経路を介した炎症性シグナル伝達と肝細胞の炎症/壊死を促進し、結節性再生性過形成(英語版)と腫瘍形成を引き起こす。また、ヒトの肝細胞がん試料の一部ではPTPN11/SHP2の発現の低下が検出された[13]。
ピロリ菌CagAタンパク質
ピロリ菌Helicobacter pyloriは胃がんと関係しているが、その一部はピロリ菌の病原性因子であるCagA(英語版)とSHP2との相互作用によるものであると考えられている[14]。CagAはピロリ菌によって胃上皮に挿入されるタンパク質である。Srcによるリン酸化によって活性化されると、CagAはSHP2に結合し、アロステリックにSHP2の活性化を引き起こす。その結果、形態学的変化と異常な有糸分裂促進シグナルが引き起こされ、持続的な活性によって宿主細胞のアポトーシスが引き起こされることもある。萎縮性胃炎、消化性潰瘍、胃がんの発症におけるcagA陽性ピロリ菌の役割が疫学的研究によって示されている[15]。
PRPN11は次に挙げる因子と相互作用することが示されている。
“Germline gain-of-function mutations in SOS1 cause Noonan syndrome”. Nat. Genet. 39 (1): 70–4. (January 2007). doi:10.1038/ng1926. PMID 17143285.
“PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects”. J. Biol. Chem. 281 (10): 6785–92. (March 2006). doi:10.1074/jbc.M513068200. PMID 16377799.
“Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia”. Cancer Res. 64 (24): 8816–20. (December 2004). doi:10.1158/0008-5472.CAN-04-1923. PMID 15604238.
“Oncogenic mechanisms of the Helicobacter pylori CagA protein”. Nature Reviews Cancer 4 (9): 688–94. (September 2004). doi:10.1038/nrc1433. PMID 15343275.
“The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells”. J. Biol. Chem. 269 (40): 25206–11. (October 1994). PMID 7523381.
“Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation”. J. Biol. Chem. 275 (28): 21435–43. (July 2000). doi:10.1074/jbc.M001857200. PMID 10801826.
“Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31”. FEBS Lett. 450 (1–2): 77–83. (April 1999). doi:10.1016/S0014-5793(99)00446-9. PMID 10350061.
“Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates”. J. Biol. Chem. 273 (43): 28332–40. (October 1998). doi:10.1074/jbc.273.43.28332. PMID 9774457.
“The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling”. J. Biol. Chem. 272 (11): 6986–93. (March 1997). doi:10.1074/jbc.272.11.6986. PMID 9054388.
“The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells”. J. Biol. Chem. 274 (1): 335–44. (Jan 1999). doi:10.1074/jbc.274.1.335. PMID 9867848.
“Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C”. J. Biol. Chem. 270 (36): 21277–84. (Sep 1995). doi:10.1074/jbc.270.36.21277. PMID 7673163.
“Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction”. Oncogene 20 (16): 1929–38. (Apr 2001). doi:10.1038/sj.onc.1204290. PMID 11360177.
“Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor”. J. Biol. Chem. 277 (26): 23216–22. (Jun 2002). doi:10.1074/jbc.M200605200. PMID 11940581.
“Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules”. Mol. Endocrinol. 12 (7): 914–23. (Jul 1998). doi:10.1210/mend.12.7.0141. PMID 9658397.
“Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells”. Cell. Signal. 14 (10): 869–78. (October 2002). doi:10.1016/S0898-6568(02)00036-0. PMID 12135708.
“Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1”. J. Biol. Chem. 274 (28): 19649–54. (July 1999). doi:10.1074/jbc.274.28.19649. PMID 10391903.
“SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130”. J. Biol. Chem. 278 (1): 661–71. (January 2003). doi:10.1074/jbc.M210552200. PMID 12403768.
“Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation”. Journal of Immunology 165 (5): 2535–43. (Sep 2000). doi:10.4049/jimmunol.165.5.2535. PMID 10946280.
“Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases”. J. Biol. Chem. 272 (2): 1032–7. (January 1997). doi:10.1074/jbc.272.2.1032. PMID 8995399.
“Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor”. Oncogene 15 (15): 1823–32. (Oct 1997). doi:10.1038/sj.onc.1201351. PMID 9362449.
“Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells”. J. Biol. Chem. 274 (18): 12401–7. (Apr 1999). doi:10.1074/jbc.274.18.12401. PMID 10212213.
“Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells”. J. Leukoc. Biol. 65 (3): 372–80. (Mar 1999). doi:10.1002/jlb.65.3.372. PMID 10080542.
“Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2”. J. Biol. Chem. 271 (35): 20981–4. (Aug 1996). doi:10.1074/jbc.271.35.20981. PMID 8702859.
“Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B”. Mol. Endocrinol. 14 (9): 1338–50. (September 2000). doi:10.1210/me.14.9.1338. PMID 10976913.
“Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins”. J. Biol. Chem. 273 (26): 15906–12. (June 1998). doi:10.1074/jbc.273.26.15906. PMID 9632636.
“Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro”. Biochem. Biophys. Res. Commun. 199 (2): 780–5. (Mar 1994). doi:10.1006/bbrc.1994.1297. PMID 8135823.
“Adapter function of protein-tyrosine phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction”. J. Biol. Chem. 270 (49): 29189–93. (Dec 1995). doi:10.1074/jbc.270.49.29189. PMID 7493946.
“Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein”. J. Biol. Chem. 270 (32): 19151–7. (Aug 1995). doi:10.1074/jbc.270.32.19151. PMID 7642582.
“The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp”. J. Biol. Chem. 268 (16): 11479–81. (Jun 1993). PMID 8505282.
“The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling”. J. Biol. Chem. 273 (41): 26908–14. (Oct 1998). doi:10.1074/jbc.273.41.26908. PMID 9756938.
“SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates”. Biochem. Biophys. Res. Commun. 228 (1): 122–7. (November 1996). doi:10.1006/bbrc.1996.1626. PMID 8912646.
“FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells”. Journal of Immunology 165 (3): 1197–209. (Aug 2000). doi:10.4049/jimmunol.165.3.1197. PMID 10903717.
“Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor”. J. Biol. Chem. 268 (29): 21478–81. (Oct 1993). PMID 7691811.
“SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells”. J. Biol. Chem. 275 (36): 27845–50. (September 2000). doi:10.1074/jbc.M003428200. PMID 10880513.
“Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation”. Blood 99 (3): 957–65. (Feb 2000). doi:10.1182/blood.V99.3.957. PMID 11806999.
“Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells”. Biochem. Biophys. Res. Commun. 239 (2): 412–7. (Oct 1997). doi:10.1006/bbrc.1997.7480. PMID 9344843.
“Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation”. J. Biol. Chem. 275 (1): 599–604. (Jan 2000). doi:10.1074/jbc.275.1.599. PMID 10617656.
“Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells”. J. Biol. Chem. 277 (34): 31107–14. (Aug 2002). doi:10.1074/jbc.M200156200. PMID 12060651.
- Tie-1 receptor tyrosine kinase endodomain interaction with SHP2: potential signalling mechanisms and roles in angiogenesis. Advances in Experimental Medicine and Biology. 476. (2000). 35–46. doi:10.1007/978-1-4615-4221-6_3. ISBN 978-1-4613-6895-3. PMID 10949653
- “SH2-B and SIRP: JAK2 binding proteins that modulate the actions of growth hormone.”. Recent Prog. Horm. Res. 55: 293–311. (2000). PMID 11036942.
- “Absence of PTPN11 mutations in 28 cases of cardiofaciocutaneous (CFC) syndrome”. Hum. Genet. 111 (4–5): 421–7. (2002). doi:10.1007/s00439-002-0803-6. PMID 12384786.
- “Mutations of PTPN11 are rare in adult myeloid malignancies.”. Haematologica 90 (6): 853–4. (2006). PMID 15951301.
- “Germ-line and somatic PTPN11 mutations in human disease.”. European Journal of Medical Genetics 48 (2): 81–96. (2005). doi:10.1016/j.ejmg.2005.03.001. PMID 16053901.
- “PTPN11 mutations and genotype-phenotype correlations in Noonan and LEOPARD syndromes.”. Pediatric Endocrinology Reviews : PER 2 (4): 669–74. (2006). PMID 16208280.
- “Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation.”. Cell Res. 17 (1): 37–41. (2007). doi:10.1038/sj.cr.7310140. PMID 17211446.
- “How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms?”. Cell. Mol. Life Sci. 64 (13): 1585–90. (2007). doi:10.1007/s00018-007-6509-0. PMID 17453145.