Loading AI tools
斜面崩壊、地すべり、土石流などによる災害 ウィキペディアから
土砂災害(どしゃさいがい)は、大雨や地震に伴う斜面崩壊(がけ崩れ・土砂崩れ)、地すべり、土石流などにより人の生命や財産が脅かされる災害[注 1][1]。
地表の斜面を構成する岩石や土砂は重力を受けており、何らかの要因により不安定になると下方へ移動する。その様式には、落石、地すべり、崩壊、流砂、土石流などいくつかの種類がある。これらの現象は全て一括りにして、「マスムーブメント(英: mass movement)」[2]、または「斜面移動(英: slope movement)」、あるいは「(広義の)地すべり(英: landslide)」[注 2][3] という用語で、専門的には定義される。
「土砂災害」は、上記のマスムーブメント(あるいは斜面移動、広義の地すべり)により発生する災害全般を指す[4]。ただ、斜面崩壊・地すべり・土石流の3分類が定着しており、この3つが土砂災害であると説明する場合がある。特に砂防、防災の場面でこのような分類・説明をすることが多い[5]。なお、この概念は世界共通ではない(cf.#日本の特質性)[注 3]。
類義語に、斜面で起こるという点に着目した「斜面災害」[3][6]、山地で起こるという点に着目した「山地災害」があり[7]、場合により同義としたり使い分けたりする。このほか、地盤を人為的に削ったり盛ったりした造成地で起こる法面崩壊などの災害も、土砂災害に含めることがある[8]。
後述(#原因)の通り、土砂災害は起伏に富んだ土地で起きやすい。日本は、国土の7割を山地・丘陵地が占め、地殻変動が活発な変動帯(環太平洋変動帯)にあり、火山も多いことから土砂災害が起きやすい。そのうえ、平野が少なく土地利用に制約があるため、特に第二次世界大戦後の経済成長や人口増加に伴って郊外の台地や丘陵地までもが都市化し、土砂災害が居住地域に及びやすくなった経緯がある[8]。
一方、国土の広い国、例えばアメリカやカナダ、ロシアなどでは、こちらも広大な山地を有するものの、地すべりなどが発生して道路や住宅が被害を受けても、場所を移して復旧するほうが安上がりなため、同じ場所で再建し更に崩壊を防止する工事などを行うことは少ない[9]。例えばアメリカの場合、工事を行う場合も、政府・行政が行う公共工事は、道路への土砂流入を防ぐ、農地などの土砂流出(侵食)・土砂流入(堆積)を防ぐといった目的が主であり、住宅を守る目的では行われない。これは、斜面崩壊などの災害について、リスクを織り込んで居住を選択するという、受益者負担の原則を重く見る考え方が根底にあるとみられる[10]。
また学問においても、欧米では粘土質地盤の性質を扱う土質力学が広く受け入れられ、土砂の粒径や土質・移動形態・移動速度などを基準とする細かい「地すべり分類」[注 2] が発達し、防災を意識することが少ない。対する日本では、土木工学が岩や礫質地盤、斜面安定などの理論に長け、分類も地「すべり」と斜面「崩壊」の区分を行う独自のものになっている[9][11]。
斜面を構成する土塊や岩盤はふつう、重力や摩擦力などの作用の結果、「斜面を移動させようとする力」よりも、それに「抵抗する力」が大きい状態で安定している。ここで、前者が大きくなったり後者が小さくなったりすると、バランスが崩れて変形を生じる[12]。土質力学上、これは土塊の剛性を超える外力によるピーク破壊と呼ばれ、破壊時の外力をピーク強度という[12]。また、斜面安定を考える上では、仮定したすべり面において土塊を滑動させるせん断破壊である[13][14]。
斜面を移動させようとする「せん断応力」が、それに抵抗する「せん断抵抗力」を上回ると滑動が始まる。後者に対する前者の比を安全率 Fs といい、斜面安定の指標とする。実際には、クーロンの破壊規準により求められる土の強度定数などを組み入れた解析法を用い、計算を行う[15]。
ピーク破壊の直前に生じる微小変形に対応して、斜面崩壊の実験等では崩壊直前に極めて低速のクリープと呼ばれる変形が生じることが確かめられている[12]。このクリープは土砂災害のいわゆる前兆現象を生じさせる原因の1つでもある。
斜面崩壊や地すべりの発生は、土塊に含まれる水の作用が関わる場合が多い。これは、浸透した水が間隙水圧を増加させ、土粒子の有効応力が減少して、せん断抵抗力が低下しせん断破壊に至るメカニズムである。土中の水を抜く、あるいは水を浸み込ませないような工事により、間隙水圧を減少させることが対策として有効である[16]。
地球上において、土砂災害の主な素因は、地殻変動、火山活動、寒冷な気候である。地殻変動は、断層運動による地盤の破砕、造山運動による地盤の隆起などを起こす。火山は、崩れやすい火山灰や火砕流などの堆積物(火山砕屑物)を一度に大量に降らせ、起伏のある溶岩地形を造る。高緯度や高山などの寒冷地域では、凍結融解を繰り返す周氷河作用が崩れやすい地質を造る[17]。
世界における巨大な崩壊・地すべり(崩壊体積107 - 109 m3)の発生地域は、インドネシア、ネパール、中国、日本、台湾、フィリピン、ニュージーランド、アメリカ、カナダ、ペルーなどが挙げられ、ほとんどが変動帯(環太平洋変動帯あるいはアルプス・ヒマラヤ変動帯)に位置する[17]。なお、例外的にノルウェーやスウェーデンなどでは、氷河の後退による岩盤地すべりやクイッククレイ地すべりが起こる[17]。
その他の素因として、強風化花崗岩(真砂土)や火山性土壌(シラスなど)、厚い堆積土(レス)といった局地的な地質、また、過放牧や大気汚染による植生の破壊、過度な採鉱、山沿いや台地の市街地化といった人為的・社会的要因も挙げられる[17]。
土砂災害の誘因(引き金)には、集中豪雨や台風などによる大雨[18]、地震、火山活動、天然ダムの決壊、人工的な掘削などがある[17]。
歴史的に見ると、日本では江戸時代を通して山林の荒廃が進行し続け、江戸末期から明治初期にかけては最も荒廃した状態にあったと考えられる。これは、この時代、日本人が生活する上で、生活に必要な物、建材、船や荷車、燃料、肥料などの大部分に木材や草を利用し、森林に大きく依存していたためである。庶民は、生活苦から株や根まで掘り起こして燃料等に用いていた時期もあるほどだった。各地で焼き畑の禁止や植林、伐採禁止・入山禁止などの御触れが出されたが、効果は乏しかったと考えられる。集落に近い里山を中心に伐採された木の無い山林が広がり、本州の広い範囲、特に西日本にはハゲ山が多く分布していたと推定される。これにより、山林では激しい土壌浸食や表層崩壊が多発した[19]。
明治に入ると、産業革命により木材の代替品が開発・普及し始めるが、工業化や戦争などで木材の需要は高く、山奥まで森林鉄道を敷いて伐採が進められた地域もあった。一方、防災のため明治政府は治水三法[注 4] を制定し、国家として「治山」や「砂防」の事業を開始した。ヨーロッパからの技術導入により、ハゲ山の土砂を安定させる山腹工や砂防ダムの技術も発達した[20]。
第二次世界大戦後には、復興のための木材需要により、伐採が急速に奥地まで拡大してしまう。一方で、植林政策により伐採地は急速に人工林化され、ハゲ山はほとんどなくなる。また高度経済成長期には、安価な輸入木材が国産に取って代わり、伐採は急速に減少する。しかし、崩壊防止機能が弱い若齢林(若い人工林)などで、表層崩壊や土石流が多発した。さらに、都市化により市街地のがけ崩れが顕在化した。1960年代後半から1970年代前半には、毎年100名以上が土砂災害の犠牲となり、自然災害犠牲者の半数以上を占める状況となった。これに対し、がけ崩れ防止や砂防ダムなどのハード対策が進められる。その後、戦後大量に植林された森林が成長して崩壊防止機能が高まり、ハード対策の進展も相まって犠牲者は次第に減少してきた[21][22]。
1979年 - 2008年までの30年間には、平均すると、およそ年間1,000件程度の土砂災害が発生している[23]。また、2009年 - 2013年までの5年間も同じく年間1,000件程度である[24]。ただし、気象条件などにより200件位から2,000件超と大きく変動がある[23]。例えば、2004年は新潟・福島豪雨や福井豪雨、多数の台風上陸などにより土砂災害が多発し、2,537件に上った[24]。
死者数も年により変動があり、例えば2003年 - 2013年の11年間では、2007年は0人、2010年は11人だった一方、上記のように各地で土砂災害が多発した2004年は62人、台風12号による紀伊半島大水害で犠牲者が多く出た2011年は85人に上った[24]。
自然災害全体で見ても、土砂災害被害の比率は低くない。1980年代から2000年代まで、年変動は大きいものの、1割から4割あり、年によっては6割に達している[22]。
種類 /(主な別名) |
特徴 | 被害の様相 |
---|---|---|
斜面崩壊[13] /(山崩れ[13][25]、崖崩れ[13][25]、土砂崩れ[13]、岩崩れ[26]、急傾斜地崩壊) |
||
地すべり[6] |
|
|
土石流 /(鉄砲水[32]、山津波[32]、泥流[32]) |
|
被害を防ぐため、初歩的には危険な土地の利用を避けること、やむを得ず利用する場合には、崩壊などを防ぐ土木設備を設けたり、前兆現象や雨の降り方などを参考に適切なタイミングで避難を行うことが有効である。
危険地帯は、特に法律に基づく土砂災害警戒区域に指定されているところやその基礎調査が行われているところ、また都道府県が調査した土砂災害危険箇所に含まれているところなどである(cf.#行政が公表している危険地帯)。ただし、これらに該当しなくても、山間部や、周りに斜面や崖のある土地では注意が必要である[42][43]。
危険地帯において土砂災害を避けるためには、雨の降り方と各種の前兆現象に注意し、前兆に気付いたときは、速やかに市町村や近隣住民などに知らせるとともに、自らも率先して避難することが有効である[42][44]。
注意すべき時期は、雨の量が多いとき、雨が長期間続いているとき、さらに雨が止んだ後しばらくの間である[42]。また、大きな地震の後もしばらくの間注意が必要である[42]。日本では、気象庁がこれまでの雨量と数時間先までの予想雨量を基に大雨警報や土砂災害警戒情報などを発表しており、これが目安になる(cf.#土砂災害が起きやすくなっていることを知らせる情報)[45]。
日本は、前述した国土の特性から住宅や公共施設などが被災する可能性のある地域を多く抱え[27]、2020年の時点でその数は約60万を超えている[46]。日本の政府広報のページでは、土砂災害から身を守る基本的な方法として以下の3つを挙げている[27]。
また東京都が2015年に発行した防災ハンドブック「東京防災」では、土砂災害から身を守るための「普段からの備え」として3つのポイントを挙げている[47]。
このほか、同書では以下も挙げている[47]。
その土地の地質や土地利用の目的などに応じた、さまざまな工法がある。
斜面崩壊や岩盤崩落の危険地帯では、斜面へのコンクリート吹き付けやプレキャストコンクリート枠の設置(法枠工)、法面アンカーの埋め込みなどの法面工(法面保護工)をはじめ、斜面への植樹(播種)や芝生張りといった植生工などが有効である[59]。
水の作用が原因となりうる斜面崩壊や地すべりの危険地帯では、水を排除するため、水路の暗渠化、横方向のボーリング、集水井の設置などの地下水排除工、地表の排水路設置、雨水浸透防止などの地表水排除工が有効である[16]。
地すべり地では、地すべり面上部の土を取り除く上部排土工と末端に盛土し擁壁で抑える抑え盛土工の併用という方法もある。盛土部は公園として利用されることが多い[59]。
土石流の危険性が高い渓流では、構造物を設けて土砂を堆積させる砂防堰堤・治山ダムの設置も有効である。ただし、その容積が限られ、時間経過により埋まってしまうため、効果は限られる[60]。
小規模で突発的な崩壊・崩落に対しては、危険地帯の道路沿い・鉄道沿いに落石シェッドや落石防止網、落石防止壁を取り付ける方法もあるが1989年に福井県の越前海岸で発生した崩落事故のように、稀に予想を超える規模の崩壊が発生して被害が生じる場合もある[61]。これを補うものとして、衝撃や移動を検知する落石検知器や地すべり計、土石流センサーなどを設置して道路の管理事務所の警報装置と連動させるようなシステムもある[61]。
日本以外でも、急峻な国土を持ち土砂災害の被害が多いインドネシア、ネパールなどで、日本の砂防技術を導入した対策が行われているところがあり、主にJICAを通じた技術支援により進められている[62]。
ただし、砂防ダムが設けられていてもふもとで土石流の被害が発生してしまった例は少なくないことなどから、対策工事が行われたから安全だ、と思い込むことは危険である[63]。
なお、これらの前兆現象は、発生の前に必ず現れるわけではない。また、周囲が暗く寝ている人が多い夜間や、雨が激しい時間帯などは、前兆現象があっても発見するのが難しい。少しでもおかしいと感じたら対処することや、早めの避難をすることが、土砂災害の回避に有効である[64]
大雨警報や土砂災害警戒情報などは気象庁が災害の危険度が高まっていることを知らせ、避難指示などは市町村が危険な地域の住民に避難を強く促すものである。土砂災害は、発生してから逃げるのは困難で、木造住宅を流失・全壊させるほどの破壊力を有し、人的被害が出やすい。その反面、危険な区域は事前に調べれば絞り込むことができ、危険な区域から少しでも離れれば人的被害を軽減できるため、各種情報を手がかりにして早めの避難を行うことは有効である。
しかし、こうした情報は市町村などの広い範囲に画一的に出されるため、住民が個々の場所の危険度の大小を認識しないまま、「警報や避難指示が出されていないこと」を「安全」と捉える場合がある。例えば、山間の1つの集落内においても、段丘面の上にある建物は下にある建物より土石流の危険度が低い、他方では段丘面上にあっても近くに山の斜面が迫っていれば斜面崩壊の危険度が高い。そのため、「警報や避難指示が出されていないこと」を安全と捉えることは好ましくなく、個々の場所の危険度の大小に応じて避難の是非を判断するべきとされる。
なお、土砂災害の前兆があった場合は警報などが出されていなくても避難し市町村などに連絡するべきとされる[71]。
ただし、地震による崩壊は、突発的である上、場所を特定できず大規模になりやすい。そのため、避難の余地がほとんどなく、有効な対処としては危険な土地の利用をあらかじめ避けるしかない[38]。
大雨警報などは、土砂災害の危険度を段階的に示すものである。市町村単位。累積雨量や予想雨量などにより求められ、気象庁が発表する[45][72]。
市町村が発令する避難指示などは、対象区域の住民に対して避難を強く促すもので、警報や雨量などを参考に市町村長が発令する。この意味するところは、「立ち退き避難」 = 避難場所への避難(指定緊急避難場所への移動)あるいは安全な親戚・友人の家などへの避難を基本とし、それがかえって危険な場合や緊急の場合は、「緊急的な待避」 = 近隣の高い建物、強度の強い建物、公園などへの移動や、「屋内での安全確保措置」 = 建物内のより安全な場所に留まることである。内閣府の『避難情報に関するガイドライン』(2021年)によると、水害等において、要配慮者を除く住民は、高齢者等避難の段階でまず避難の準備をして情報に注意を向け、避難指示を受けて避難を始めるよう推奨されている一方、土砂災害においては、対象区域のすべての住民が「高齢者等避難の段階で避難を始める」ことが推奨されている。これは、突発的で予測困難な土砂災害の性質を考慮したもので、2019年の令和元年東日本台風の教訓から改められたものである[79]。
土砂災害の避難において留意すべき点は以下の通り。
警報や避難情報は、災害の「見逃し」がないように出される。そのため、発表されたにもかかわらず災害が発生しない、いわゆる「空振り」はつきものとなる。住民側の意識として、空振りだったけれど「被害がなくて良かった」・避難したけれど「何もなくて幸運だった」と考え、警報や避難情報を軽視しないよう心掛けることが、自らの被害回避や、行政側が避難指示発令に躊躇してしまう事態の抑止につながると考えられる[85][86]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.