Loading AI tools
ウィキペディアから
液状化現象(えきじょうかげんしょう)は、地震の際に、地下水位の高い砂地盤が振動により液体状になる現象。単に液状化(えきじょうか、英: liquefaction)[1]ともいう。
これにより比重の大きい構造物が埋もれ、倒れたり、地中の比重の小さい構造物(下水道管等)が浮き上がったりする。この現象は日本国内では、1964年の新潟地震の際に鉄筋コンクリート製の建物が丸ごと(潰れたり折れたりではなく)沈んだり倒れたりしたことで注目されたが、この地震当時は「流砂現象」という呼び方をされていた[2]。
地表付近の含水状態の砂質土が、地震の震動により固体から液体の性質を示すことにより、上部の舗装や構造物などが揚圧力を受け破壊、沈み込みを起こすものである。砂丘地帯や三角州、埋め立て地・旧河川跡や池沼跡・水田跡などの人工的な改変地で発生しやすい[3]。近年、都市化が進んだ地区で該当地域が多いことから被害拡大の影響が懸念される。
1964年(昭和39年)6月16日に発生した新潟地震の際に、信濃川河畔や新潟空港などでこの現象が発生したことから日本でも知られるところとなった[4]。また同年に発生したアラスカ地震でも液状化による被害が発生し、これ以降は土質力学の分野で活発に研究が行われるようになった[5]。
東京都心部は河口に位置する上に埋立地が多く存在するため、大地震の発生時には液状化対策が施されていない箇所で液状化現象が発生し、道路や堤防、ライフラインの破損、基礎のしっかりしていない建物の傾斜などの被害が発生する可能性もある。
現在、液状化現象の発生危険箇所をとりまとめたハザードマップが整備されつつあり例えば[6]、堤防の補強などの措置が図られている。ライフラインの被害も懸念されるため、水道管は耐震管に布設替えが進みつつあり、ガス管はポリエチレン化が進んでいる[7]。一方で、下水道管は耐震化が難しく復旧も遅いため、居住困難な状態が長引く場合がある(2011年の東日本大震災での福島第一原子力発電所免震棟、Jヴィレッジ、浦安市、いわき市など)。
ゆるく堆積した砂質土層では、標準貫入試験で得られるN値が10程度以下と小さい場合が多い。一般に液状化現象が生じるかどうかはFL値、液状化の程度はDcyやPL値などの指標[要曖昧さ回避]を用いて判定する。
砂を多く含む砂質土や砂地盤は、砂の粒子同士の剪断応力による摩擦により地盤が安定を保っている。このような地盤で、地下水位の高い場所もしくは地下水位が何かの要因で上昇した場所で、地震や建設工事などの連続した振動が加わると、その繰り返し剪断によって体積が減少し、間隙水圧が増加し、その結果、有効応力が減少する。これに伴い剪断応力が減少して、これが0になったとき液状化現象が起きる。このとき地盤は急激に耐力を失う。
またこのとき、間隙水圧は土被り圧(全応力)に等しい。この状態は波打ち際などで、水が押し寄せるまでは足元がしっかりしていても、水が押し寄せた途端に足元が急に柔らかくなる状態に似ている。また雨上がりの地面を踏み続けると、地面に水が吹き出てくる状態にも似ていると言える。
地震や建設工事などにより連続した振動が砂地盤等に加わると、液状化現象が生じ、地盤は急激に支持力を失う。建物を地盤に固定する基礎のうち、礫層や岩盤等の適当な支持層に打ち込む支持杭と異なる摩擦杭では、建物を支えていた摩擦力を失い、建物が傾く不同沈下を起こす場合がある。重心の高い建物や、重心が極度に偏心した建物では、より顕著に不等沈下が生じ、転倒ないし倒壊に至る場合がある。
この転倒は(建物自体が途中で壊れなければ)ゆっくりしたもので、新潟地震で倒れた県営住宅で地震に遭った人の証言では、「家はゆっくりと船が沈むように傾き、そのため(建物が横倒しになったのに)けがをせずに済んだ。」という[2]。
下層の地盤が砂質土で、表層を粘土質で覆った水田等で液状化が起きた場合は、液状化を起こした砂が表層の粘土を突き破り、水と砂を同時に吹き上げる噴砂[8]と呼ぶ現象を起こすことがある。1964年の新潟地震では、県内の各地でボイリングが観測された。
地震に伴って液状化が発生しうる地点の震央距離 (km)とマグニチュード の関係は、 で表すことができる[9][10]とされている。
構造物を建築する際には対象となる地盤で、液状化が起こるのか(発生の予測)、起きた場合にどの程度変形するのか(変形の予測)を事前に検討する必要がある。この予測手法は、1964年の新潟地震以降、土質力学や地盤工学の分野で研究と実用化が進み、現在ではそれぞれ簡便法、詳細法という形でまとめられている[11]。
簡易法や簡易判定法[12]などとも呼称される。簡便法は更にいくつかの手法から構成されており、設計基準や指針によって採用される手法が異なる。
ある地盤ある深度において液状化が発生するかどうかを判定する方法であり、計算上は液状化に対する抵抗率 が1を下回るかどうかで判定される。 は、地盤がもつ液状化に対する抵抗力(液状化強度) と地震による外力 を用いて 、 という式で計算される。
は標準貫入試験によるN値や粒度分布、単位体積重量などの原位置での観測値から計算されるが、対象地盤での観測値が存在しない場合には、道路橋示方書[14]等に記載されている標準値が利用される場合もある。また、 は想定された水平震度や最大地表面加速度、単位体積重量、対象層の深度から計算されることが多い。 や の具体的な計算式は、設計指針や基準で異なる。
詳細法は数値解析を用いる手法であり、主に有限要素法を用いて、地盤を微小要素にモデル化し、地震による外力の変化により、時間とともに地盤がどのように変形するかを検討する。詳細法には大きく分けて、全応力解析と有効応力解析の2つが存在する。
全応力解析では、地盤内の間隙水と土骨格の相互作用を考慮せずに、地盤をモデル化する。全応力解析は更に2つに大別でき、具体的にはSHAKE[17]に代表される重複反射理論に基づく等価線形解析や、Ramberg-Osgoodモデル[18]や双曲線モデル[19]によって、地盤の剛性のひずみ依存性を考慮した非線形地震応答解析が存在する。
有効応力解析では、地盤内の間隙水と土骨格の相互作用を考慮し、地盤をモデル化する。その際、間隙水と土骨格の関係をどのように表現するのか、構成則をどのように定式化したのかによって、多くのバリエーションが存在する[20]。代表的なプログラム・モデルとして国内ではFLIP、LIQUAなどが、国外ではPM4SandやSaniSAND、UBCSandなどがある。
側方流動(そくほうりゅうどう、英: lateral flow、lateral spreading)は、地盤流動現象の1つで、傾斜や段差のある地形で液状化現象が起きた際に、いわゆる泥水状になった地盤が水平方向に移動する現象をいう。
側方流動には大きく分けて2つのタイプがある。1つは、地表面が1 - 2%程度のゆるい勾配になっており、地中部には液状化層が存在するものである。この場合、地盤が傾斜に沿って移動することとなる。もう1つは護岸などに見られるタイプで、地震の揺れおよび地盤の液状化で護岸などが移動することで、後背の地盤が側方流動を引き起こすものである。
このような側方流動が発生した場合、地中構造物に多大な影響を与える。例えば杭基礎であれば、側方流動が発生することにより、杭は地盤から水平方向に剪断や曲げの力を受けることとなる。この地盤からの力が杭の耐力を超過し、杭の剪断破壊等を起こす。このため杭基礎は上部構造物を支える事ができなくなり、場合によっては構造物の転倒などを引き起こすことにつながっていく。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.