Solar eclipse of April 29, 1976

20th-century annular solar eclipse From Wikipedia, the free encyclopedia

Solar eclipse of April 29, 1976

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, April 29, 1976,[1] with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.9 days after apogee (on April 27, 1976, at 13:30 UTC), the Moon's apparent diameter was smaller.[2]

Quick Facts Gamma, Magnitude ...
Solar eclipse of April 29, 1976
Annular eclipse
Thumb
Map
Gamma0.3378
Magnitude0.9421
Maximum eclipse
Duration401 s (6 min 41 s)
Coordinates34°N 18.3°E / 34; 18.3
Max. width of band227 km (141 mi)
Times (UTC)
Greatest eclipse10:24:18
References
Saros128 (56 of 73)
Catalog # (SE5000)9456
Close

Annularity was visible from North Africa, Greece, Turkey, Middle East, central Asia, India, China. 5 of the 14 eight-thousanders in Pakistan and China—Nanga Parbat, K2, Broad Peak, Gasherbrum II and Gasherbrum I, lie in the path of annularity. A partial eclipse was visible for parts of the Canadian Maritimes, North Africa, Central Africa, Europe, the Middle East, Central Asia, and South Asia.

Note that the central line of this annular solar eclipse followed a path extremely similar to that of the total eclipse that will occur 112 years later on April 21, 2088.

Observation

The Institute of Physics and Institute of Mathematics of the Chinese Academy of Sciences and the Xinjiang Earthquake Team conducted observations of gravitational effects using gravimeters, inclinometers, pendulum clocks and seismometers in southwestern Hotan County, Hotan Prefecture, Xinjiang near the Karakoram Pass at an altitude of 5,500 metres (18,000 ft). Results showed that the gravitational acceleration had no obvious effect within the accuracy of the instruments. No inclination was recorded on the photosensitive paper of the inclinometer due to the width of its lines. Three inclinations were pen-recorded, whose time and direction were clearly related to that of the eclipse. Due to the difficult conditions with the high altitude, the observation team was unable to obtain more comparative data.[3]

Eclipse details

Summarize
Perspective

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[4]

More information Event, Time (UTC) ...
April 29, 1976 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1976 April 29 at 07:23:05.3 UTC
First Umbral External Contact 1976 April 29 at 08:30:13.1 UTC
First Central Line 1976 April 29 at 08:32:52.8 UTC
First Umbral Internal Contact 1976 April 29 at 08:35:32.9 UTC
First Penumbral Internal Contact 1976 April 29 at 09:52:32.8 UTC
Ecliptic Conjunction 1976 April 29 at 10:20:15.6 UTC
Greatest Eclipse 1976 April 29 at 10:24:17.7 UTC
Greatest Duration 1976 April 29 at 10:30:53.5 UTC
Equatorial Conjunction 1976 April 29 at 10:33:23.0 UTC
Last Penumbral Internal Contact 1976 April 29 at 10:55:47.8 UTC
Last Umbral Internal Contact 1976 April 29 at 12:12:56.6 UTC
Last Central Line 1976 April 29 at 12:15:35.7 UTC
Last Umbral External Contact 1976 April 29 at 12:18:14.3 UTC
Last Penumbral External Contact 1976 April 29 at 13:25:23.3 UTC
Close
More information Parameter, Value ...
April 29, 1976 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.94208
Eclipse Obscuration 0.88752
Gamma 0.33783
Sun Right Ascension 02h27m19.6s
Sun Declination +14°34'10.4"
Sun Semi-Diameter 15'52.7"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 02h27m02.8s
Moon Declination +14°51'57.3"
Moon Semi-Diameter 14'44.9"
Moon Equatorial Horizontal Parallax 0°54'07.6"
ΔT 46.8 s
Close

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information April 29Descending node (new moon), May 13Ascending node (full moon) ...
Eclipse season of April–May 1976
April 29
Descending node (new moon)
May 13
Ascending node (full moon)
ThumbThumb
Annular solar eclipse
Solar Saros 128
Partial lunar eclipse
Lunar Saros 140
Close

Eclipses in 1976

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 128

Inex

Triad

Solar eclipses of 1975–1978

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

More information series sets from 1975 to 1978, Descending node ...
Solar eclipse series sets from 1975 to 1978
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 May 11, 1975
Thumb
Partial
1.0647 123 November 3, 1975
Thumb
Partial
−1.0248
128 April 29, 1976
Thumb
Annular
0.3378 133 October 23, 1976
Thumb
Total
−0.327
138 April 18, 1977
Thumb
Annular
−0.399 143 October 12, 1977
Thumb
Total
0.3836
148 April 7, 1978
Thumb
Partial
−1.1081 153 October 2, 1978
Thumb
Partial
1.1616
Close

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Series members 47–68 occur between 1801 and 2200: ...
Series members 47–68 occur between 1801 and 2200:
47 48 49
Thumb
January 21, 1814
Thumb
February 1, 1832
Thumb
February 12, 1850
50 51 52
Thumb
February 23, 1868
Thumb
March 5, 1886
Thumb
March 17, 1904
53 54 55
Thumb
March 28, 1922
Thumb
April 7, 1940
Thumb
April 19, 1958
56 57 58
Thumb
April 29, 1976
Thumb
May 10, 1994
Thumb
May 20, 2012
59 60 61
Thumb
June 1, 2030
Thumb
June 11, 2048
Thumb
June 22, 2066
62 63 64
Thumb
July 3, 2084
Thumb
July 15, 2102
Thumb
July 25, 2120
65 66 67
Thumb
August 5, 2138
Thumb
August 16, 2156
Thumb
August 27, 2174
68
Thumb
September 6, 2192
Close

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

More information 21 eclipse events between July 11, 1953 and July 11, 2029, July 10–11 ...
21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11 April 29–30 February 15–16 December 4 September 21–23
116 118 120 122 124
Thumb
July 11, 1953
Thumb
April 30, 1957
Thumb
February 15, 1961
Thumb
December 4, 1964
Thumb
September 22, 1968
126 128 130 132 134
Thumb
July 10, 1972
Thumb
April 29, 1976
Thumb
February 16, 1980
Thumb
December 4, 1983
Thumb
September 23, 1987
136 138 140 142 144
Thumb
July 11, 1991
Thumb
April 29, 1995
Thumb
February 16, 1999
Thumb
December 4, 2002
Thumb
September 22, 2006
146 148 150 152 154
Thumb
July 11, 2010
Thumb
April 29, 2014
Thumb
February 15, 2018
Thumb
December 4, 2021
Thumb
September 21, 2025
156
Thumb
July 11, 2029
Close

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Series members between 1801 and 2200
Thumb
September 8, 1801
(Saros 112)
Thumb
August 7, 1812
(Saros 113)
Thumb
July 8, 1823
(Saros 114)
Thumb
June 7, 1834
(Saros 115)
Thumb
May 6, 1845
(Saros 116)
Thumb
April 5, 1856
(Saros 117)
Thumb
March 6, 1867
(Saros 118)
Thumb
February 2, 1878
(Saros 119)
Thumb
January 1, 1889
(Saros 120)
Thumb
December 3, 1899
(Saros 121)
Thumb
November 2, 1910
(Saros 122)
Thumb
October 1, 1921
(Saros 123)
Thumb
August 31, 1932
(Saros 124)
Thumb
August 1, 1943
(Saros 125)
Thumb
June 30, 1954
(Saros 126)
Thumb
May 30, 1965
(Saros 127)
Thumb
April 29, 1976
(Saros 128)
Thumb
March 29, 1987
(Saros 129)
Thumb
February 26, 1998
(Saros 130)
Thumb
January 26, 2009
(Saros 131)
Thumb
December 26, 2019
(Saros 132)
Thumb
November 25, 2030
(Saros 133)
Thumb
October 25, 2041
(Saros 134)
Thumb
September 22, 2052
(Saros 135)
Thumb
August 24, 2063
(Saros 136)
Thumb
July 24, 2074
(Saros 137)
Thumb
June 22, 2085
(Saros 138)
Thumb
May 22, 2096
(Saros 139)
Thumb
April 23, 2107
(Saros 140)
Thumb
March 22, 2118
(Saros 141)
Thumb
February 18, 2129
(Saros 142)
Thumb
January 20, 2140
(Saros 143)
Thumb
December 19, 2150
(Saros 144)
Thumb
November 17, 2161
(Saros 145)
Thumb
October 17, 2172
(Saros 146)
Thumb
September 16, 2183
(Saros 147)
Thumb
August 16, 2194
(Saros 148)
Close

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Series members between 1801 and 2200
Thumb
August 28, 1802
(Saros 122)
Thumb
August 7, 1831
(Saros 123)
Thumb
July 18, 1860
(Saros 124)
Thumb
June 28, 1889
(Saros 125)
Thumb
June 8, 1918
(Saros 126)
Thumb
May 20, 1947
(Saros 127)
Thumb
April 29, 1976
(Saros 128)
Thumb
April 8, 2005
(Saros 129)
Thumb
March 20, 2034
(Saros 130)
Thumb
February 28, 2063
(Saros 131)
Thumb
February 7, 2092
(Saros 132)
Thumb
January 19, 2121
(Saros 133)
Thumb
December 30, 2149
(Saros 134)
Thumb
December 9, 2178
(Saros 135)
Close

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.