Solar eclipse of February 28, 2063

Future annular solar eclipse From Wikipedia, the free encyclopedia

Solar eclipse of February 28, 2063

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063,[1] with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.7 days after apogee (on February 25, 2063, at 16:30 UTC), the Moon's apparent diameter will be smaller.[2]

Quick Facts Gamma, Magnitude ...
Solar eclipse of February 28, 2063
Annular eclipse
Thumb
Map
Gamma−0.336
Magnitude0.9293
Maximum eclipse
Duration461 s (7 min 41 s)
Coordinates25.2°S 77.7°E / -25.2; 77.7
Max. width of band280 km (170 mi)
Times (UTC)
Greatest eclipse7:43:30
References
Saros131 (53 of 70)
Catalog # (SE5000)9648
Close

The path of annularity will be visible from parts of the Prince Edward Islands, western Indonesia, Malaysia, Brunei, and the southern Philippines. A partial solar eclipse will also be visible for parts of Southern Africa, Antarctica, Australia, and Southeast Asia.

Eclipse details

Summarize
Perspective

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

More information Event, Time (UTC) ...
February 28, 2063 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2063 February 28 at 04:42:05.6 UTC
First Umbral External Contact 2063 February 28 at 05:49:10.0 UTC
First Central Line 2063 February 28 at 05:52:20.5 UTC
First Umbral Internal Contact 2063 February 28 at 05:55:31.6 UTC
First Penumbral Internal Contact 2063 February 28 at 07:12:40.5 UTC
Equatorial Conjunction 2063 February 28 at 07:22:27.6 UTC
Greatest Duration 2063 February 28 at 07:28:49.9 UTC
Ecliptic Conjunction 2063 February 28 at 07:39:28.8 UTC
Greatest Eclipse 2063 February 28 at 07:43:30.0 UTC
Last Penumbral Internal Contact 2063 February 28 at 08:14:50.6 UTC
Last Umbral Internal Contact 2063 February 28 at 09:31:42.9 UTC
Last Central Line 2063 February 28 at 09:34:52.1 UTC
Last Umbral External Contact 2063 February 28 at 09:38:00.6 UTC
Last Penumbral External Contact 2063 February 28 at 10:44:59.0 UTC
Close
More information Parameter, Value ...
February 28, 2063 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.92926
Eclipse Obscuration 0.86352
Gamma −0.33604
Sun Right Ascension 22h45m11.8s
Sun Declination -07°54'42.4"
Sun Semi-Diameter 16'08.9"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 22h45m46.2s
Moon Declination -08°10'47.1"
Moon Semi-Diameter 14'47.6"
Moon Equatorial Horizontal Parallax 0°54'17.7"
ΔT 92.6 s
Close

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information February 27Ascending node (new moon), March 14Descending node (full moon) ...
Eclipse season of February–March 2063
February 27
Ascending node (new moon)
March 14
Descending node (full moon)
Thumb
Annular solar eclipse
Solar Saros 131
Partial lunar eclipse
Lunar Saros 143
Close

Eclipses in 2063

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 131

Inex

Triad

Solar eclipses of 2062–2065

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on July 3, 2065 and December 27, 2065 occur in the next lunar year eclipse set.

More information series sets from 2062 to 2065, Ascending node ...
Solar eclipse series sets from 2062 to 2065
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 March 11, 2062
Thumb
Partial
−1.0238 126 September 3, 2062
Thumb
Partial
1.0191
131 February 28, 2063
Thumb
Annular
−0.336 136 August 24, 2063
Thumb
Total
0.2771
141 February 17, 2064
Thumb
Annular
0.3597 146 August 12, 2064
Thumb
Total
−0.4652
151 February 5, 2065
Thumb
Partial
1.0336 156 August 2, 2065
Thumb
Partial
−1.2759
Close

Saros 131

This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

More information Series members 39–60 occur between 1801 and 2200: ...
Series members 39–60 occur between 1801 and 2200:
39 40 41
Thumb
September 28, 1810
Thumb
October 9, 1828
Thumb
October 20, 1846
42 43 44
Thumb
October 30, 1864
Thumb
November 10, 1882
Thumb
November 22, 1900
45 46 47
Thumb
December 3, 1918
Thumb
December 13, 1936
Thumb
December 25, 1954
48 49 50
Thumb
January 4, 1973
Thumb
January 15, 1991
Thumb
January 26, 2009
51 52 53
Thumb
February 6, 2027
Thumb
February 16, 2045
Thumb
February 28, 2063
54 55 56
Thumb
March 10, 2081
Thumb
March 21, 2099
Thumb
April 2, 2117
57 58 59
Thumb
April 13, 2135
Thumb
April 23, 2153
Thumb
May 5, 2171
60
Thumb
May 15, 2189
Close

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

More information 21 eclipse events between July 23, 2036 and July 23, 2112, July 23–24 ...
21 eclipse events between July 23, 2036 and July 23, 2112
July 23–24 May 11 February 27–28 December 16–17 October 4–5
117 119 121 123 125
Thumb
July 23, 2036
Thumb
May 11, 2040
Thumb
February 28, 2044
Thumb
December 16, 2047
Thumb
October 4, 2051
127 129 131 133 135
Thumb
July 24, 2055
Thumb
May 11, 2059
Thumb
February 28, 2063
Thumb
December 17, 2066
Thumb
October 4, 2070
137 139 141 143 145
Thumb
July 24, 2074
Thumb
May 11, 2078
Thumb
February 27, 2082
Thumb
December 16, 2085
Thumb
October 4, 2089
147 149 151 153 155
Thumb
July 23, 2093
Thumb
May 11, 2097
Thumb
February 28, 2101
Thumb
December 17, 2104
Thumb
October 5, 2108
157
Thumb
July 23, 2112
Close

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Series members between 1801 and 2200
Thumb
March 14, 1801
(Saros 107)
Thumb
February 12, 1812
(Saros 108)
Thumb
January 12, 1823
(Saros 109)
Thumb
November 10, 1844
(Saros 111)
Thumb
August 9, 1877
(Saros 114)
Thumb
July 9, 1888
(Saros 115)
Thumb
June 8, 1899
(Saros 116)
Thumb
May 9, 1910
(Saros 117)
Thumb
April 8, 1921
(Saros 118)
Thumb
March 7, 1932
(Saros 119)
Thumb
February 4, 1943
(Saros 120)
Thumb
January 5, 1954
(Saros 121)
Thumb
December 4, 1964
(Saros 122)
Thumb
November 3, 1975
(Saros 123)
Thumb
October 3, 1986
(Saros 124)
Thumb
September 2, 1997
(Saros 125)
Thumb
August 1, 2008
(Saros 126)
Thumb
July 2, 2019
(Saros 127)
Thumb
June 1, 2030
(Saros 128)
Thumb
April 30, 2041
(Saros 129)
Thumb
March 30, 2052
(Saros 130)
Thumb
February 28, 2063
(Saros 131)
Thumb
January 27, 2074
(Saros 132)
Thumb
December 27, 2084
(Saros 133)
Thumb
November 27, 2095
(Saros 134)
Thumb
October 26, 2106
(Saros 135)
Thumb
September 26, 2117
(Saros 136)
Thumb
August 25, 2128
(Saros 137)
Thumb
July 25, 2139
(Saros 138)
Thumb
June 25, 2150
(Saros 139)
Thumb
May 25, 2161
(Saros 140)
Thumb
April 23, 2172
(Saros 141)
Thumb
March 23, 2183
(Saros 142)
Thumb
February 21, 2194
(Saros 143)
Close

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Series members between 1801 and 2200
Thumb
August 28, 1802
(Saros 122)
Thumb
August 7, 1831
(Saros 123)
Thumb
July 18, 1860
(Saros 124)
Thumb
June 28, 1889
(Saros 125)
Thumb
June 8, 1918
(Saros 126)
Thumb
May 20, 1947
(Saros 127)
Thumb
April 29, 1976
(Saros 128)
Thumb
April 8, 2005
(Saros 129)
Thumb
March 20, 2034
(Saros 130)
Thumb
February 28, 2063
(Saros 131)
Thumb
February 7, 2092
(Saros 132)
Thumb
January 19, 2121
(Saros 133)
Thumb
December 30, 2149
(Saros 134)
Thumb
December 9, 2178
(Saros 135)
Close

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.