Remove ads
Konzept der mathematischen Physik Aus Wikipedia, der freien Enzyklopädie
In der mathematischen Physik beschreibt die Kausalstruktur einer Lorentzschen Mannigfaltigkeit die kausalen Beziehungen (Relationen) zwischen den Raum-Zeit-Punkten (Ereignissen, englisch events) der Mannigfaltigkeit.
In der modernen Physik (insbesondere der allgemeinen Relativitätstheorie) wird die Raumzeit durch eine Lorentzsche Mannigfaltigkeit dargestellt. Die kausalen Beziehungen zwischen Punkten in dieser Mannigfaltigkeit beschreiben, welche Ereignisse in der Raumzeit welche anderen Ereignisse beeinflussen können.
Die kausale Struktur einer beliebigen (im Allgemeinen nicht ebenen) Lorentzschen Mannigfaltigkeit ist infolge der Krümmung wesentlich komplizierter als im ebenen Fall, d. h. im Fall eines Minkowski-Raums. Die Diskussion der Kausalstruktur solcher Mannigfaltigkeiten erfolgt über glatte, d. h. differenzierbare, Kurven, die Paare von Raumzeitpunkten (Ereignissen) verbinden. Bedingungen für die Tangentenvektoren der Kurven definieren dann die kausalen Beziehungen.
Sei eine Lorentzsche Mannigfaltigkeit für die Metrik auf dem Träger (Menge der Raumzeitpunkte). Als Signatur für die Metrik wird im weiteren Verlauf verwendet.
Der Tangentialraum (auch kurz [1]) an im (Raum-Zeit-)
Nullvektor (englisch zero vector ) | wenn |
lichtartig (englisch null vector ) | wenn und |
zeitartig | wenn |
raumartig | wenn |
Anmerkungen:
Die kanonische Lorentzsche Mannigfaltigkeit ist die ebene Minkowski-Raumzeit, wobei ein vierdimensionaler pseudoeuklidischer Raum ist, d. h. ≅ mit der (flachen) Minkowski-Metrik . Die Bezeichnungen für die Klassen der Tangentenvektoren stammen aus der Physik dieses Modells. Die kausalen Beziehungen zwischen Punkten sind in der ebenen Minkowski-Raumzeit besonders einfach, weil der Tangentenraum ebenfalls isomorph zum ist und daher die Raumzeitpunkte nach Festlegung eines Ursprungs mit Tangentenvektoren identifiziert werden können. Der Vierervektor mit Koordinaten wird nach dem Vorzeichen von klassifiziert, wobei die kartesischen Koordinaten im dreidimensionalen Raum, die Zeit und c die universelle Grenzgeschwindigkeit (Vakuumlichtgeschwindigkeit – bei natürlichen Einheiten: ) ist. Aufgrund der Invarianz der Metrik ist die Klassifizierung jedes Vektors im Raum unabhängig von der Wahl der Bezugssysteme, wenn diese durch eine Lorentz-Transformation miteinander verbunden sind.[Anm. 2]
An jedem Punkt (Ereignis) in können die zeitartigen Tangentenvektoren im Tangentenraum des Punktes in zwei Klassen unterteilt werden. Zu diesem Zweck definiert man zunächst eine Äquivalenzrelation für Paare zeitartiger Tangentenvektoren:
Seien und zwei zeitartige Tangentenvektoren an einem Punkt . Man nennt und äquivalent (geschrieben ) genau dann, wenn .
Es gibt dann zwei Äquivalenzklassen, die unter sich alle zeitartigen Vektoren (und damit Tangentenvektoren am Punkt ) aufteilen. Es wird dann eine dieser Äquivalenzklassen willkürlich als zukunftsgerichtet (en. future-directed) und die andere als vergangenheitsgerichtet (en. past-directed) bezeichnen. Physikalisch gesehen entspricht diese Bezeichnung der beiden Klassen von zukunfts- und vergangenheitsgerichteten zeitlichen Vektoren der Wahl eines Zeitpfeils (bei Tangentenvektoren am jeweiligen Punkt ). Die Bezeichnungen zukunfts- und vergangenheitsgerichtet können durch stetige Fortsetzung auf lichtartige Vektoren ausgedehnt werden. Beide Äquivalenzklassen zeitartiger Vektoren sind Zusammenhangskomponenten, dasselbe gilt für die lichtartigen Vektoren und für die raumartigen Vektoren in Gesamtheit.[1]
Ein Beispiel für einen zukunftsgerichteten Vierervektor ist der Viererimpuls.
Eine Lorentzsche Mannigfaltigkeit ist zeitorientierbar (en. time-orientable),[2] wenn über die gesamte Mannigfaltigkeit eine stetige Bestimmung von zukunftsgerichteten und vergangenheitsgerichteten für nicht-raumartige Vektoren vorgenommen werden kann. Nicht jede Lorentzsche Mannigfaltigkeit ist zeitorientierbar.
Wege bzw. Kurven[Anm. 3] in der Mannigfaltigkeit werden als zeitartig, raumartig, lichtartig, kausal bezeichnet, wenn die Tangentialvektoren an den Weg bzw. die Kurve auf der gesamten Länge zur entsprechenden Kategorie gehören. Im Detail:
Ein Weg (in der Physik auch Pfad genannt) in ist eine stetige Abbildung , wobei ein nicht entartetes Intervall (d. h. eine zusammenhängende Menge von mehr als einem Punkt) in ist. Bei einem glatten Weg ist μ eine angemessene Anzahl von Malen (-mal mit bzw. beliebig oft, d. h. ) stetig differenzierbar. Ein regulärer Weg hat eine nicht verschwindende Ableitung.
Eine Kurve in ist das Bild eines Wegs oder – kategorientheoretisch äquivalent – eine Äquivalenzklasse von Wegen mit gleicher Spur (Bildmenge), die durch Re-Parametrisierung verwandt sind. Im allgemeinsten Fall müssen diese Parametertransformationen Homöomorphismen (umkehrbar stetig) sein, bei glatten Kurven Diffeomorphismen, bei gerichteten (orientierten) Kurven[3][4][5] strikt monoton steigend sein. Für gerichtete Kurven ist sinnvollerweise vorauszusetzen, dass zeitorientierbar ist.
Glatte reguläre Kurven (oder Wege) in können anhand ihrer Tangentenvektoren klassifiziert werden. Eine solche Kurve ist
Die Anforderungen der Regularität und Nicht-Entartung der Wege stellen sicher, dass geschlossene kausale Kurven (wie solche, die aus einem einzigen Punkt bestehen) nicht automatisch von allen Raumzeiten zugelassen werden (nur von den nicht-zeitorientierbaren).
Wenn die Mannigfaltigkeit zeitorientierbar ist, können die kausalen (nicht-raumartigen) orientierten Kurven je nach ihrer Orientierung in Bezug auf die Zeit weiter klassifiziert werden. Eine kausale (zeit- oder lichtartige) orientierte Kurve in ist
Diese Definitionen gelten nur für kausale (nicht-raumartige) orientierte Kurven, da nur diesen eine Orientierung in Bezug auf die Zeit zugeordnet werden kann.
Geschlossene Weltlinien gibt es etwa im Gödel-Universum (Kurt Gödel, 1949).[9]
Es gibt in der Lorentz-Mannigfaltigkeit mehrere Arten von kausalen Relationen zwischen Raumzeitpunkten (Ereignissen) und :
Anmerkungen:
Im ebenen Fall eines Minkowski-Raumes sind diese Umstände alle trivial und die angegebenen Relationen reflexive oder irreflexive Halbordnungen. Für Lorentz-Mannigfaltigkeiten ist das aber keine Selbstverständlichkeit.
Die Bezeichnung horismos leitet sich ab von altgriechisch ὁρισμός ‚Festlegung‘ und war die Bezeichnung für ein kaiserliches Dekret (Byzantinisches Reich, bekannt seit dem späten 11. Jhd.), es war ein Synonym für Prostagma.[13]
Wenn eine stückweise glatte zeitartige Kurve zwischen zwei Punkten existiert, liegt ein Punkt in der Zukunft des anderen und dieser in der Vergangenheit des ersteren.
Für einen (Raumzeit-)Punkt in der Mannigfaltigkeit definiert man nach Penrose die folgenden Mengen:[14][15]
Damit ist ist der Inhalt des Zukunfts-Lichtkegels, die Menge aller Punkte , die von aus mit einer zukunftsgerichteten stückweise glatten zeitartigen Kurve (Weltlinie) erreicht werden können. Analog ist der Inhalt des Vergangenheits-Lichtkegels. Der Inhalt des Doppel-Lichtkegels ist damit . Punkte in können von aus durch eine in die Zukunft gerichtete Weltlinie, die ganz im Innern des Lichtkegels liegt, erreicht werden.
Ähnlich definiert man:[14][15]
Die kausale Zukunft ist daher die Menge aller Punkte, die mit stückweise glatten nicht-raumartigen Kurven erreicht werden. Entsprechend definiert kausale Vergangenheit . Der Punkt kann umgekehrt von den Punkten in aus durch eine in die Zukunft gerichtete nicht-raumartige Kurve erreicht werden. Die Synonymie von „nicht-raumartig“ und „kausal“ rührt von der Annahme her, dass sich Ursache und Wirkung mit maximal Lichtgeschwindigkeit ausbreiten können, d. h. teilweise (abschnittsweise) mit Lichtgeschwindigkeit („lichtartig“ wie das Licht) und teilweise darunter („zeitartig“ wie Materie – mehr Zeit als Raum verbrauchend). Diese Mengen entsprechen geometrisch einem (ggf. verzerrten) Vollkegel (Kegelkörper), einschließlich des Kegelmantels als Rand-Hyperfläche. Der Doppel-Vollkegel ist damit .[Anm. 4]
Für den Fall, dass die so definierten Relationen die Bedingungen für Halbordnungen erfüllen, handelt es sich bei den Lichtkegeln um Ordnungskegel. Notwendige Voraussetzung dafür ist, dass es keine geschlossenen Weltlinien gibt.
In der flachen Minkowski-Raumzeit ist diese Bedingung erfüllt und es liegen Halbordnungsrelationen bzw. Ordnungskegel vor. Ein Lichtkegel ist hier eine Menge von Raumzeitpunkten, die zu vermittels eines zeitartigen (Parallelverschiebungs-)Vektors zu erreichen sind, also das vierdimensionale Innere eines idealen vierdimensionalen Kegels, im dreidimensionalen einem geraden Kreiskegel entsprechend, nur dass hier die Kegelschnitte Kugeln sind (da sich ein von einem Punkt ausgehender Lichtblitz kugelförmig ausbreitet). Die vermöge eines lichtartigen Vektors erreichbaren Punkte bilden den Kegelmantel (Rand des Kegels), eine dreidimensionale Hyperfläche (vgl. Differenzierung zwischen Kugelfläche und Kugelkörper), die oben als Zukunfts-Nullkegel eingeführt wurde.[17]
Die Zuordnungen , die für alle in definiert sind, werden zusammen als die kausale Struktur (oder Kausalstruktur) von bezeichnet.
Anmerkung:
Dieser Sprachgebrauch weicht etwas ab von dem in der Mathematik relationaler Strukturen üblichen, bei der eine Trägermenge – wie – oder Trägerstruktur – wie mit den zugehörigen Relationen zu einem Tupel zusammengefasst wird. Das wäre hier etwa oder ausführlicher . Da aber stets folgende logische Äquivalenzen gelten:
so können die Relationen aus den Ordnungskegeln zurückgewonnen werden, weshalb diese Definitionen (kategorientheoretisch) äquivalent sind und dieselbe Struktur beschreiben.
Für eine Teilmenge von definiert man als mengentheoretischen Vereinigungen:[14]
Für zwei Teilmengen von definiert man:
Cauchy-Entwicklungen sind wichtig für die Untersuchung des Determinismus. Es gilt .
Zur Thermodynamik der Kausaldiamanten siehe beispielsweise Jakobson & Visser (2019).[23]
Dabei bezeichnet die abgeschlossene Hülle einer Teilmenge .
Zum Thema starke und schwache kosmische Zensur siehe z. B. Flores (2007)[18]
Seien gegeben und als zwei Riemannsche Mannigfaltigkeiten (Spezialfall: Lorenztsche Mannigfaltigkeiten) mit derselben Trägermenge (Raumzeit) , aber im Allgemeinen verschiedenen Metriken und .
und heißen konform äquivalent (en. conformally related oder conformally equivalent) genau dann, wenn es eine auf definierte glatte (hinreichend oft differenzierbare) positive Abbildung [Anm. 7] gibt derart, dass gilt:
soll heißen:
Für jedes seien die auf dem Tangentialraum gegebenen Metriken mit und bezeichnet. Dann gilt:
Eine Abbildung dieser Art wird konformer Faktor (oder konforme Skalierung) genannt.
Äquivalente Formulierungen verlangen eine glatte (nicht immer als positiv vorausgesetzte) Funktion und
und bezeichnen die Abbildung als konformen Faktor. Von dieser Konvention abgesehen sind beide Definitionen gleichwertig und gehen mit ineinander über.[25][26][27]
Betrachtet man die Definitionen, welche Tangentenvektoren zeitarig, lichtartig oder raumartig sind, so sieht man, dass sie unverändert bleiben, wenn man eine Metrik oder eine konform äquivalente Metrik zugrunde legt.
Nimmt man als Beispiel an, dass im Raumzeit-Punkt ein zeitartiger Tangentialvektor in Bezug auf die -Metrik sei. Das bedeutet . Es ist dann , also ist auch ein zeitartiger Tangentenvektor bezüglich der Metrik .
Daraus folgt, dass die kausale Struktur einer Lorentzschen Mannigfaltigkeit durch eine konforme Transformation unberührt bleibt. Insbesondere bleibt eine Null-Geodäte unter einer konformen Skalierung eine Null-Geodäte.
Das Theorem von Malament (genauer: Malament, Hawking-McCarthy-King, Levichev), das folgendes besagt:
Wenn es eine bijektive Abbildung zwischen zwei Raumzeiten und mit Dimension > 2 gibt, die bzgl. der Kausalstruktur treu ist (sie erhält), d. h. für die gilt:
dann sind und konform isometrisch und ein konformer Isomorphismus.[28][15]
Der konforme Faktor bleibt dabei zunächst unbestimmt. Er hängt mit dem Volumen der Regionen in der Raumzeit zusammen. Dieser Volumenfaktor lässt sich ermitteln, indem für jeden Raumzeitpunkt ein Volumenelement angegeben wird. Das Volumen einer Raumzeitregion könnte dann durch Zählen der Anzahl der Punkte in dieser Region ermittelt werden, wenn eine lokal diskrete Kausalmenge zugrunde gelegt wird.[28]
Eine unendliche Metrik lässt Geodäten von unendlicher Länge und echter Zeit (en. infinite length/proper time) zu. Manchmal kann man jedoch eine konforme Neuskalierung der Metrik mit einem konformen Faktor vornehmen, der bei Annäherung an das Unendliche ausreichend schnell auf 0 abfällt, um so einen konformen Rand (en. conformal boundary) der Mannigfaltigkeit zu erhalten. Die topologische Struktur des konformen Randes hängt von der kausalen Struktur ab.
Siehe auch Penrose-Diagramm und Holografisches Prinzip.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.