Loading AI tools
statisches Bauwerkssystem, Konstruktion aus mehreren Stäben, die an beiden Enden miteinander verbunden sind (meist in Dreieckform) Aus Wikipedia, der freien Enzyklopädie
Ein Fachwerk ist ein Stabwerk, dessen Stäbe allein durch die Normalkraft beansprucht werden, deren Enden in den Knotenpunkten miteinander verbunden sind.[2] Ein Fach ist ein zweidimensionales Vieleck, welches durch Stäbe aufgespannt wird. Fachwerke bestehen in der Regel überwiegend aus Dreiecken. Der Begriff Fachwerk leitet sich vermutlich vom mittelhochdeutschen vach oder fah für in Felder geteilte Fläche und Geflecht ab.
Gelenkige Knotenverbindungen sind eines von mehreren Merkmalen des sogenannten idealen Fachwerks, die in der Literatur oft als zentrale Eigenschaft des Fachwerks genannt wird.[3] Reale Fachwerke werden in der Regel mit biegeweichen Stäben ausgeführt, die sich näherungsweise als gelenkige Knoten modellieren lassen. Stabwerke mit biegesteifen Knoten sind keine Fachwerke im engeren Sinne.
Ein Fachwerkträger ist ein Tragelement mit schlankem und schmalem Verhältnis zu seiner Länge, das gewöhnlich horizontal verläuft und auf Durchbiegung beansprucht ist. Die an Ober- und Unterseite durchlaufenden Stäbe werden als Ober- und Untergurt bezeichnet. Die Stäbe eines Gitterträgers stehen enger als beim Fachwerkträger, so dass der Eindruck eines Gitters entsteht.
Konstruktionen aus Fachwerken haben im Allgemeinen im Verhältnis zu anderen üblichen Bauweisen für ihre Tragfähigkeit ein geringes Eigengewicht. Nachteilig kann sich ihr großes Volumen auswirken, was indes zugleich unter dem Gesichtspunkt der Funktionsästhetik auch reizvoll sein kann (Beispiel: optisch stark in Erscheinung tretende Fachwerkbrücken). Ihre Erdbebensicherheit ist hoch.[4]
Räumliche Gebäude-Fachwerke gibt es als Fassaden, Dächer (auch Vordächer und Hallendächer) und Kuppeln. Weitere Anwendungen sind Fachwerkbrücken, Kräne (Portalkräne, Kranbrücken, Turmkräne, Wippkräne u. a.), Masten (Hochspannungsmasten, Oberleitungsmasten, Telefonmasten, Windkraftmasten) und Aussichtstürme.
Im Flugzeug-, Motorrad-, (Lasten-)Fahrrad- und Automobilbau werden räumliche Fachwerke für Fahrgestelle als sogenannte Gitterrahmen verwendet. Sie enthalten aber oft nicht ausschließlich Stabdreiecke, was insbesondere auf die Motorradrahmen zutrifft. Dabei handelt es sich um Mischformen[5] aus allgemeinem, biegesteifem Stabwerk und Fachwerk.
Bei Flugzeugen wurde historisch der ganze Rumpf mitsamt Flügeln aus (Holz-)Fachwerk gefertigt und bespannt, etwa beim DFS 230, einem Lastensegler mit Flugzeugrumpf aus einem geschweißten Stahlrohrfachwerk mit Stoffbespannung. Auch Starrluftschiffe wurden – im Unterschied zu aufgepumpten Prallluftschiffen – mit Fachwerk-Stützkonstruktionen aufgebaut.
Die Untersuchung der Gebrauchsfähigkeit von Fachwerken (Festigkeit und elastische Verformung) erfolgt mit Hilfe der Festigkeits- und Verformungslehre, die in ihrer Anwendung bei Tragwerken als Baustatik bezeichnet wird.
In die Festigkeits- und Verformungsuntersuchungen fließen immer vereinfachende, d. h. die Realität idealisierende Annahmen ein. Das in der Baustatik übliche Begriffspaar ideales Fachwerk / reales Fachwerk betrifft insbesondere die Annahmen über die Steifigkeit der Knoten. Ihre relativ geringe Steifigkeit durch Gelenkigkeit zu ersetzen, ist eine Idealisierung.
Folgende Sachverhalte werden vernachlässigt:
Zusammenfassend werden ausschließlich Normalkräfte in den Stäben beachtet, Querkräfte, Biege- und Torsionsmomente hingegen vernachlässigt.
Die o. g. Idealisierungen werden in der Praxis nicht immer (insbesondere nicht alle gemeinsam) vorgenommen und dürfen dies aus Sicherheitsgründen auch nicht immer. Dadurch steigt der Berechnungsaufwand. So sind z. B. zusätzlich zu Normalspannungen auch Nebenspannungen zu ermitteln und für die zulässigen Materialspannungen und für die zulässige Verformung des Fachwerks zu bewerten.
Die im Folgenden angegebenen Methoden setzen die Annahme eines idealen Fachwerks voraus.
Dass Fachwerke statisch bestimmt sind, ist eine bei ihrer Untersuchung zuerst zu beantwortende Frage. Sie lässt sich prinzipiell nur bei mit Gelenken (anstatt biegesteifen Knoten) versehenen, also nur bei idealen Fachwerken stellen.
Ein statisch unterbestimmtes Fachwerk scheidet aus, da es auf seinen Fundamenten oder in sich beweglich wäre. Statisch überbestimmte Fachwerke haben zu viele Stäbe, was dem Prinzip Leichtbau widerspricht. Sie sind aber stabil, haben lediglich den Nachteil, dass der Untersuchungsaufwand größer wird. Thermische Ausdehnungen und Versetzungen der Fundamente können bei ihnen sekundäre (bezüglich eigentlichem Gebrauch zusätzliche) Beanspruchungen bewirken.
Die Frage, ob ein Fachwerk statisch bestimmt ist, wird prinzipiell durch Auswerten der Gleichgewichtsbedingungen (Summe aller Kräfte bzw. Drehmomente ist Null) beantwortet. Als vereinfachte Bestimmungsmethode wurden aus ihnen die sogenannten Abzählkriterien entwickelt. Sie liefert nur eine Zahl, die aussagt, wie oft unterbestimmt ein System ist minus der Freiheitsgrade. Oftmals besitzen statische Systeme entweder Freiheitsgrade oder sind statisch Überbestimmt, oder sind statisch bestimmt, dort und nur dort kann die Formel herangezogen werden wie viele Freiheitsgrade/Überbestimmt ein System ist. Die Formel sagt nicht aus, ob sie anwendbar ist oder nicht, daher sollte sie nur zur Kontrolle verwendet werden. Die Abzählkriterien sind nur eine notwendige, aber nicht hinreichende Bedingung für den Nachweis statischer Bestimmtheit.[9]
Eine Bestimmung kann mit sogenannten Abbau- bzw. Aufbaukriterien (was passiert, wenn ein Stab entfernt oder hinzugefügt wird?) erfolgen. Die sichere Antwort ergibt sich ebenfalls aus der Arbeit mit den Gleichgewichtsbedingungen.
Für ebene Fachwerke wird folgende Formel verwendet:[10][11]
Hierbei ist
Beispiel: nebenstehend abgebildetes Fachwerk
Für räumliche Fachwerke wird folgende Formel verwendet:[10][11][12]
Mit dem Knotenpunktverfahren lassen sich die Stabkräfte durch Aufstellen eines Gleichungssystems ermitteln. Für jeden Knoten eines 2-D-Fachwerkes werden die je maximal zwei linear unabhängigen Gleichgewichtsbedingungen – z. B. die Summe der Kräfte in x- und in y-Richtung muss Null sein – ermittelt. Dadurch ergibt sich ein Gleichungssystem, das bei statischer Bestimmtheit des Fachwerkes gelöst werden kann.
Im dreidimensionalen Fall können jeweils maximal drei linear unabhängige Gleichungen aufgestellt werden.
Das Rittersche Schnittverfahren dient zur Berechnung von Stabnormalkräften im Fachwerk. Somit können pro Schnitt im Zweidimensionalen maximal drei Stabkräfte oder im Dreidimensionalen maximal sechs Stabkräfte berechnet werden.
Das Hennebergsche Stabtauschverfahren wird bei nicht einfachen Fachwerken angewandt.[13]
Der Cremonaplan dient bei statisch bestimmten Fachwerken der zeichnerischen Bestimmung der Stabkräfte.
Raumfachwerke unterscheiden sich von räumlichen Stabwerken und Rahmen dadurch, dass sie auch ohne biegefeste Verbindungen der Stäbe untereinander stabil sind. Sie erfüllen damit das Bildungsgesetz für räumliche Fachwerke.[14] Die Räumlichkeit der Fachwerke kann entweder durch Anordnung der Stäbe in mehreren Lagen (Untergurt, Diagonalen, Obergurt), oder/und durch Anordnung der Stäbe im Raum erfolgen. Im ersten Fall erzeugt man ein ebenes Raumfachwerk, im zweiten Fall ein gestuftes oder gekrümmtes Raumfachwerk, das im Sonderfall (z. B. bei einer Kuppel) auch einlagig sein kann. Ein klassisches Beispiel des räumlichen gekrümmten, aber im Prinzip ebenen Fachwerkes ist die geodätische Kuppel.
Die Verbindung der Stäbe erfolgt im Allgemeinen mit Knotenteilen, die massiv (Kugeln, Zylinder) oder aufgelöst (Scheiben) ausgeführt werden können.
Die Geometrie der Stabanordnung spielt eine wesentliche Rolle beim Entwurf von Raumfachwerken. Die ebenen und gestuften Raumfachwerke lassen sich aus einer Kombination (Komposition)[15] von Tetraeder und (Halb-)Oktaeder ableiten, seltener aus dem Hexaeder (Kubus). Die Raumfachwerke für Kuppeln können aus dem Dodekaeder und Ikosaeder abgeleitet werden.[16] Die fünf genannten Polyeder bilden die platonischen Körper.
Die Geometrie von Raumfachwerken auf Freiformflächen, insbesondere solche auf NURBS (Non Uniform Rational B-Spline-Flächen), erfordert den Einsatz von CAD-Spezialprogrammen, die die Netzgenerierung auf diesen Flächen zulassen.[17]
Durch die von Computern unterstützte Planung und Fertigung können beliebige Konfigurationen realisiert werden. Trotzdem stellt die Orientierung der Verbindungsknoten ein besonderes Problem dar, um Knotengröße und Fräsarbeit insbesondere bei Freiformflächen mit direkt aufliegender Glaseindeckung zu minimieren.
Für Fachwerke kann praktisch jedes Baumaterial (Holz, Stahl, Aluminium, Edelstahl, kohlenstofffaserverstärkter Kunststoff und in seltenen Fällen auch Beton[18]) verwendet werden, ebenso Kombinationen daraus. Es sind sowohl runde, gebogene als auch (viel-)eckige Profile möglich wie auch beliebige Kombinationen daraus. Bei Metallen werden Walzerzeugnisse wie z. B. Bleche, Profilträger (I-, L-, U-, T-, Z-Profile) wie auch andere Formen eingesetzt.
Hans Issel: Der Fachwerkbau, Nikol, Verlagsgesellschaft, Hamburg 2022, ISBN 978-3-86820-694-4
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.