Remove ads
From Wikipedia, the free encyclopedia
Rekombinantna DNK (rDNK) ima molekule koje su nastale primjenom laboratorijskih metoda genetičke rekombinacije (kao što je molekulsko kloniranje) koje omogućavaju da se prikupi genetički materijal iz više izvora, stvarajući sekvence koje se inače ne bi mogle naći u biološkim organizmima. Rekombinantna DNK je je moguća zato što molekule DNK svih organizama imaju istu hemijsku strukturu. Oni se razlikuju samo u sekvencama nukleotida]] u identičnoj ukupnoj strukturi gradivnih elemenata (nukleotida).
Rekombinantna DNK je generalni naziv za uzimanje komada jedne molekule DNK i njegovo kombiniranje s nekim drugom lancem DNK. Rekombinantne molekule DNK se ponekad nazivaju i himerna DNK, jer su obično izrgađene od materijala iz dvije različita vrste, poput mitskih himera. Tehnologija r-DNK koristi palindromne sekvence i dovodi do proizvodnje njihovih ljepljivih i tupih krajeva. Aekvence DNK koje se koristi u izgradnji rekombinantnih molekula DNK može poticati iz bilo koje vrste. Na primjer, DNK biljaka se može ugraditi u bakterijsku DNK ili ljudska DNK može biti spojena sa gljivičnom DNK. Osim toga, DNK sekvence koje se ne pojavljuju nigdje u prirodi mogu biti kreirane putem hemijske sinteze DNK i inkorporirane u rekombinantne molekule. Koristeći tehnologije rekombinantne DNK i sintetičke DNK, doslovno se može kreirati bilo koja sekvenca DNK i uvesti u vrlo širok spektar živih organizama.
Proteini koji mogu rezultirati iz ispoljavanja rekombinantne DNK u okviru žive ćelije, nazivaju se rekombinantnim proteinima. Međutim, kada je rekombinantna DNK koja kodira protein unesena u organizam domaćina, to ne znači da će se nužno ne proizvoditi rekombinantni protein. Tada ispoljavanje stranih proteina zahtijeva korištenje specijaliziranih modifikacija za ispoljavanje vektora, a često i značajne restrukcije stranih kodirajućih sekvenci.
Rekombinantna DNK se razlikuje od genetičke rekombinacije po tome što je rezultat vještačkih metoda u epruveti, a druga je normalan biološki proces koji rezultira u remiksu postojećih DNK sekvenci u suštini u svim organizmima.
U kreiranju rekombinantne DNK primjenjuju se posebne metode odgovarajućeg laboratorijskog procesa.[1] Formiranje rekombinantne DNA zahtijeva vektor za kloniranje – DNK molekula koja se replicira unutar žive ćelije. Vektori su uglavnom izvedeni iz plazmid[a ili virusa, a predstavljaju relativno male segmente DNK koji sadrže potrebne genetičke signale za replikaciju, kao i dodatne elemente radi lakšeg umetanja u stranu DNK, identifikaciju ćelije koje sadrže rekombinantne DNK, i, gdje je to moguće, ispoljavanje strane DNK. Izbor vektora za kloniranja molekula ovisi o izboru organizma domaćina, veličine DNK koji se klonira o tome i da li i na koji način se ispoljava strana DNK. Segmenti DNK se mogu kombinirati koristeći razne metode, kao što su kloniranje pomoću restrikcijskih enzimia/ ligaza ili Gibsonovim sklopom.
U standardnom protokolu kloniranja, kloniranje DNK fragmenata u osnovi uključuje sedam koraka:
Nakon transplantacije u organizam domaćina, sadržana strana DNK u rekombinantnom DNK konstruktu može ali ne mora biti ispoljena. To je zato što DNK može jednostavno biti replicirana bez ekspresije ili može biti transkribirana i prevedena, tako da se proizvodi rekombinantni protein]]. Općenito govoreći, izraz stranog gena zahtijeva restrukturiranje gena uključene sekvence, što je potrebno za proizvodnju jedne iRNK molekule koja se može koristiti u ćeliji domaćinskom translacijskom aparatu (npr. promotoru, pokretanju translacijskog signala i transkripcijskog terminatora). Specifični promjene u organizmu domaćina mogu poboljšati ekspresiju unesenog gena. Osim toga, prilagodbe mogu biti potrebne i za kodirajuće sekvence kao i za optimizaciju translacije , čineći protein rastvorljivim. Usmjeravanjem rekombinantnog proteina pravilno u ćeliji ili vanćelijskoj lokaciji, stabiliziraju protein da se spriječi degradacija.
U većini slučajeva, organizmi koji sadrže rekombinantnu DNK imaju normalne fenotipove. To se odnosi na njihov izgled, ponašanje] i metabolizam, koji su obično nepromijenjeni, a jedini način da se pokaže prisustvo rekombinantne sekvence je da se ispita sama DNK, obično koristeći polimeraznu lančanu reakciju (PCR test.
Ako je u rDNK sekvenci kodirajući gen koji se izražava, onda se prisustvo RNK i / ili proteinskog proizvoda rekombinantnog gena mogu otkriti, obično pomoću RTPCR ili Western blot metodom hibridizacijezapadne hibridizacije. Ukupne fenotipske promjene nisu norma, osim ako izabrana i modificirani rekombinantni gen unesen da se generira biološka aktivnost u organizmu domaćina. Dodatni fenotipovi koji se pojeve, uključuju toksičnost na organizam domaćina uzrokovanu proizvodom rekombinantnog gena, posebno ako je proteinska ekspresija prekomjerno izražena u neodgovarajućjm ćelijama ili tkivima.
U nekim slučajevima, rekombinantna DNK može imati pogubne efekte čak i ako nije izražena. Jedan mehanizam koji dovodi do te pojave se to dogodi je insercijska inaktivacija, u kojoj je rDNK umetnuta u gen ćelije domaćina. U nekim slučajevima, istraživači koristite ovaj fenomen za "nokaut" gena da odrede njihovu biološku funkciju i značaj. Drugi mehanizam kojim umetnuta rDNA hromosomsku DNK može uticati na ekspresije gena je za neprikladna aktivacija prethodno neispoljenih gena ćelije domaćina. To se može dogoditi, na primjer, kada se fragment rekombinantne DNK koji sadrži aktivni promotor nalazi pored prethodno "tihog" gena ćelije domaćina ili kada gen ćelije domaćina svojom funkcijom obuzda ekspresiju gena outem insercijske inaktivacije rekombinantne DNK.
Rekombinantna DNK se naširoko koristi u biotehnologiji, medicini i istraživanjima. Danas, rekombinantni proteina i drugi proizvodi koji su rezultat upotrebe tehnologije rDNA se nalaze u suštini, u svakoj zapadnoj apoteci, ljekarskom ili veterinarskom uredu, medicinskim laboratorijama za ispitivanje i biološka istraživanja. Osim toga, organizmi koji su izmanipulisani korištenjem tehnologije rekombinantne DNK, kao i proizvodi dobijeni iz tih organizama, pronašli u svoj put u mnogim farmama, supermarketima, medicinskim ormarima pa čak i prodavnicama životinja, kao što su one koje se bave prodajom GloFish i drugim genetički modificiranih sorti i varijeteta.
Najčešća primjena rekombinantne DNK je u osnovnim istraživanjima, u kojimam je ta tehnologija važna za većinu dosadašnjih aktivnosti u biološkim i biomedicinskim naukama. Rekombinantna DNK se koristi i za identifikaciju, mapiranje i sekvenciranje gena, kao utvrđivanje njihova funkcija. Sonde rDNK se upotrebljavaju u analizi ekspresije gena unutar pojedinih ćelija i širom tkiva cijelog organizma. Rekombinantni proteini su široko koriste kao reagensi u laboratorijskim eksperimentima i za generiranje sonde antitijela za ispitivanje sinteze proteina u ćeliji i organizamu.
Mnoge dodatne praktične primjene rekombinantne DNK mogu se naći u industriji, proizvodnji hrane, humanoj i veterinarskoj medicini, poljoprivredi, i bioinžinjerstvu. U nastavku su identificirani neki specifični primjeri.
Ideju o mogućnosti kreiranja rekombinantne DNA je prvi put predložio Peter Lobban, diplomirani student profesora Dalea Kaisera u Biohemijskom odjelu na Stanford University Medical School. Prve publikacije koje opisuju uspješnu proizvodnju i unutarćelijsku replikaciju rekombinantne DNK pojavile su se 1972. i 1973. Stanford University, za USA prijavljuje patent za rekombinantnu DNK, 1974. godine, navodeći da su pronalazači Stanley N. Cohen i Herbert W. Boyer; ovaj patent je nagrađen u 1980. Prvi odobreni lijek koji je generiran korištenjem tehnologije rekombinantne DNK je ljudski inzulin, koji je razvio Genentech, s licencirala ga je Eli Lilly and Company.[10][11][12][13]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.