在幾何學中,八面半八面體是一種非凸多面體,屬於星形多面體及均勻多面體[1],也可以歸類在非凸均勻多面體,其索引為U3。八面半八面體由8個正三角形和4個正六邊形組成,且每個頂點對應的角皆相等,因此也可以被歸類為擬正多面體[2],然而由於這個立體同時具備半多面體的特性,因此被部分學者分成一類新的立體,即擬正半多面體(Versi-Regular Polyhedra),這類立體共有九個,最早在1881年由亞伯特·巴杜羅(Albert Badoureau)發現並描述[3]。特別地,這個立體的邊長與外接球半徑相等[4]。八面半八面體可以與星形八面體共同堆砌填滿空間,因此曾應用於建築結構中。[5]
性質
八面半八面體共有12個面、24條邊和12個頂點[6][7],是一種十二面體,每個頂點都是2個正三角形和2個六邊形的公共頂點。[6]
八面半八面體是唯一可定向且歐拉示性數為零的半多面體,[8]這意味著其具有拓撲環面的性質。[9]
八面半八面體 |
八面半八面體在拓樸上的展開圖可以排佈為分割成8個正三角形和4個正六邊形的菱形。所有頂點的角虧為零 |
這個展開圖是截半六邊形鑲嵌的一部份,在威佐夫符號中計為3 3 | 3、考克斯特-狄肯記號計為 |
八面半八面體僅有一種二面角,為三角形和六邊形的棱之交角,其值為三分之一的反餘弦值[10][11]:
其值約為70度31分43.6秒
由於其凸包為截半立方體,因此其12頂點會與截半立方體相同,為(0, ±1, ±1),(±1, 0, ±1),(±1, ±1, 0),若邊長為a,則座標要縮放倍。[12]
作為簡單多面體
八面半八面體具有抽象多胞形半三角形面和互相相交的六邊形面,但若去除相交的面作為一個簡單多面體,則其可以視為由32個正三角形組成的凹多面體[13][14]。這種多面體共有32個面、48條邊和13個頂點,其結構與四角化截半立方體拓樸同構,不過四角化截半立方體有18個頂點而這種多面體僅有13個頂點是因為有6個頂點在中心共用。另一方面,這個立體也可以視為由8個正四面體組合而成。[15]:103
-
四角化截半立方體
-
截半立方體
-
倒四角化截半立方體
八面半八面體
對偶多面體
八面半八面體的對偶多面體是八面半無窮星形八面體。其外觀與立方半無窮星形八面體相同[16]。
從定義上來看,對偶多面體的面會與原始立體的頂點圖相同,同時頂點周圍之面的排列方式會和原始立體的面之邊相同,也就是說對偶多面體的頂點圖為原始立體的面[17]。由於八面半無窮星形八面體是八面半八面體的對偶多面體,而八面半八面體的12個頂點皆為4個面的公共頂點,因此八面半無窮星形八面體的面理應具有12個面,每個面由4個邊組成[7]。然而八面半八面體有部分面幾何中心落在整個立體的幾何中心上,因此其對偶多面體的頂點會落在無窮遠處,即無窮實射影平面上的點。[18]一般來說,這樣的立體無法被具象化[7]。為了具像化這種立體,溫尼爾在著作《對偶模型》中將其描述為由無限高的柱體組合構成的立體,在這樣的視覺化方式下,八面半八面體外觀為由4個無限高的六角柱構成的立體[18]。
相關多面體
-
八面半八面體
八面半八面體可透過截去皮特里立方體的所有頂點來構造,也就是說,八面半八面體可以視為截半的皮特里立方體。[20][21]
-
八面半八面體
中心八面半八面體數
中心八面半八面體數是一種排列成八面半八面體的有形數。第n個中心八面半八面體數可以表示為[23]。由於八面半八面體數與截半立方體共用相同的頂點排列方式,因此數列前兩項與中心截半立方體數(OEIS數列A005902)相同,第三項開始少去了八面半八面體數相對於截半立方體缺少的6個四角錐[23]
前幾個中心八面半八面體數為:
參見
- 五複合八面半八面體
參考文獻
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.