在幾何學中,三角化八面體又稱三角三八面體[1][2] 是一種卡塔蘭立體,其對偶多面體為截角立方體[3][4],可以視為在正八面體每個面上加入三角錐的結果[5] ,但由於有另一種多面體也是由正八面體每個面上加入三角錐的結果,為大三角化八面體,差別在於大三角化八面體是向內加入角錐[6],而此多面體向外加入角錐,為了區別兩者差異,因此有時也會稱此多面體為小三角化八面體[4]。
在礦物學中,這種形狀又稱為三八面體[2](英語:trisoctahedron[7][8][4]),部分的礦石可以結晶成這種形狀[9],例如螢石[10]。
性質
三角化八面體是一個卡塔蘭立體,為阿基米德立體——截角立方體的對偶多面體[4],因此具有面可遞的性質。
三角化八面體是一種二十四面體[4],由24個面、36條邊和14個頂點組成[11],其中24個面為全等的等腰三角形,頂點可分為2種,一種為8個等腰三角形的公共頂點,另一種為3個等腰三角形的公共頂點。
組成三角化八面體的等腰三角形的2個底角為arccos約為31.4°[13],由三角形內角關係可知頂角約為117.2°[14][13],邊長比為1:1:[15][13]。
若一個三角化八面體最短邊長為2且幾何中心位於原點,則其頂點坐標為[16]:
正交投影
三角化八面體有3個特殊的正交投影,分別為於稜上投影、於8個等腰三角形的公共頂點上投影和於3個等腰三角形的公共頂點上投影。
投影 對稱性 |
[2] | [4] | [6] |
---|---|---|---|
三角化 八面體 |
|||
截角 立方體 |
球面鑲嵌
三角化八面體也可以表示為球面鑲嵌,也可以透過施萊格爾投影,於平面上呈現。而其施萊格爾投影的結果在圖論中是一種阿基米德對偶圖[17],稱為小三角化八面體圖[18]。
使用
三角化八面體出現在部分的藝術創作中,例如莫里茲·柯尼利斯·艾雪的藝術創作[19]。部分小說也有使用三角化八面體進行創作,如休伊·庫克的系列小說《黑暗時代的編年史》中的《希望之石與奇蹟工人》。除了藝術創作外,常見文化也有關於三角化八面體的使用,例如部分的魔術方塊和骰子之外型。
相關多面體與鑲嵌
三角化八面體可以經由八面體透過三角化變換構造,即將正八面體每個面貼上三角錐來獲得。其他也是由正八面體透過康威變換得到的多面體有:
三角化八面體是由等腰三角形組成,且對偶多面體由正八邊形與正三角形交錯組成。同樣由等腰三角形組成,且對偶多面體由正多邊形與正三角形交錯組成的多面體或鑲嵌圖包括:
類似前面提到的概念,三角化八面體是由等腰三角形組成,且對偶多面體由正八邊形與正三角形交錯組成。同樣由等腰三角形組成,且對偶多面體由正八邊形與其他正多邊形交錯組成的多面體或鑲嵌圖包括:
三角化八面體一般是指截角立方體的對偶多面體,但三角化八面體一詞原意應為「三角化後的八面體」,換句話說,即在八面體的面上加入三角錐的多面體也可以稱為三角化八面體。
大三角化八面體的是一個拓樸結構與三角化八面體相同的多面體。三角化八面體是由正八面體的每個面上加入角錐構成,而大三角化八面體則是在正八面體的每個面中加入穿過對面的面的倒角錐而成[6],這種在面上加入倒角錐的做法使其與三角化八面體有一樣的拓樸結構,幾何上的差異在於,大三角化八面體和三角化八面體一個是向外加入角錐[21]、一個是向內加入角錐。
星形八面體一般是指由兩個正四面體組合成的複雜多面體,複雜多面體是指該多面體有出現面與面相交的多面體,而簡單多面體則是面與面沒有自相交情況的多面體。對於與星形八面體外形相同的簡單多面體則也可以視為在正八面體每個面階貼上三角錐的結果,其貼上的三角錐為正四面體[20]。
小三角化八面體圖
在圖論的數學領域中,與三角化八面體相關的圖為小三角化八面體圖(Small Triakis Octahedral Graph),是三角化八面體之邊與頂點的圖[18],是一個阿基米德對偶圖[17]。
參考文獻
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.