夏爾·埃爾米特或譯作夏勒·厄密(法語:Charles Hermite,法語發音:[ʃaʁl ɛʁˈmit],1822年12月24日—1901年1月14日)是一位傑出[1]的法國數學家,因證明 是超越數而聞名。
Quick Facts 夏爾·埃爾米特(Charles Hermite), 出生 ...
Close
研究領域還涉及數論、線性泛函分析(一種無窮維線性代數)、不變量理論、正交多項式、橢圓函數、代數學。埃爾米特多項式、埃爾米特規範形式、埃爾米特算子(自伴算子)、埃爾米特矩陣(自伴矩陣)、立方埃爾米特樣條插值法都以他命名。其中有關內積空間中自伴算子(厄密算符)的趣味理論,意外地成為了半個世紀後興起的量子力學研究的基礎代數工具。「自伴算子(埃爾米特算子)可與實數類比[2],其特徵值一定是實數」這個不太起眼的基礎性質,卻是量子力學必須引用自伴算子來表達可觀測物理量的最大原因,而量子力學中的算子運算,也為線性代數學中的對偶空間理論,提供了一個重要而奇妙的應用實例。
1822年12月24日,夏爾·埃爾米特出生於法國洛林摩澤爾河畔的迪耶於茲。他的父母一共有7個孩子,夏爾在其中排行第6。[3][4]他的父親菲迪納·埃爾米特(Ferdinand Hermite)以前曾是一家鹽業公司的首席(d'abord)工程師。菲迪納與妻子馬德雷妮·拉勒曼(Madeleine Lallemand)結婚後,便到岳父的布匹公司里任職。[3]菲迪納轉行的另一個原因,是因為他覺得自己並不是很喜歡當工程師。[4]菲迪納是一個熱愛藝術的人,一直希望自己能有朝一日以藝術為職業。[3]夏爾的媽媽則是一個女強人,掌控著從生意到丈夫的方方面面。[4]父母所在公司的生意一直經營得很紅火[4],寬裕的經濟條件為他後來投入艱深的基礎研究免去了後顧之憂。1828年,埃爾米特一家搬到了洛林南錫。這年夏天,夏爾·埃爾米特的右腳不幸致畸,這使得他走動時很不方便。但有的資料[4]認為夏爾的畸形是從小就有的。父母很擔心他的殘疾會影響他的生活。[3]
他的姓氏「Hermite」(埃爾米特)在法文中可作名詞用。其名詞含義與英文「hermit」(意為「隱士」)同源,皆出自古希臘文「ἐρημίτης」(erēmítēs,意為「在荒涼處居住者」)。不過「Hermite」作姓氏時的語源可能不同於其名詞語源。而其名字「Charles」(夏爾/查爾斯)的含義是「自由之人」。
埃爾米特先後在南錫皇家中學(collège royal de Nancy)、巴黎亨利四世中學以及索邦路易大帝中學學習。[3][4]在他還小的時候,他就已經讀過一些數學大師所寫過的作品,如拉格朗日有關數值方程求解的作品和高斯的數論作品。[1]此外他還涉獵過歐拉的作品。[3]他並不重視自己所在年齡段應該學好的知識,相反地,他與同樣畢業於路易大帝中學的伽羅瓦一樣,早已把注意力放到了5次方程的可解性問題上。[3]中學就讀期間,他曾嘗試寫過論證5次方程不可能存在根式解的文章。[3]
埃爾米特希望能進入頂級名校巴黎綜合理工學院學習。為通過較難的入學考試,他單獨準備了1年時間[1](尚需考證他這一年是在路易大帝中學讀大學預科班還是他自己單獨報補習班[來源請求])。給他補習的老師是卡塔蘭。[3]1842年他以第68名[4]的成績如願考入巴黎綜合理工學院,但又不幸在1年後因肢體殘疾被學校勸退。[1][3]他的父母找學校交涉後,學校勉強同意讓他繼續就讀,但仍對他提了苛刻的要求。[3]當時的巴黎綜理帶有軍事院校性質,以健康問題為由拒絕學生入學也無可厚非。但有說法指出學校刁難他,是因為有其他有權勢者想通過擠走夏爾,從而讓自己的小孩得到繼續在該校就學的機會。[3]夏爾覺得自己無法接受學校的條件,放棄了回到學校的機會。次年,校方順理成章地將他正式除名。[3]
在離開學校後的5年內,他一方面在為考取其它學校做著漫長的準備,另一方面則繼續鑽研與考試無關的數學問題。埃爾米特並未選擇閉門造車的方式研習數學,而是憑藉其獨特眼光設法結交當時的一流數學家。這段時間裡,他結識了約瑟夫·劉維爾、卡爾·雅可比、約瑟·伯特蘭等數位德才兼備的學界名人。[3]埃爾米特經常登門拜訪伯特蘭,並就地取材地迎娶了伯特蘭的一個姐/妹(sister)路易斯·伯特蘭(Louise Bertrand)[3],把學習與婚姻兩件大事同時辦好了。雖然他當時只是一個沒拿到文憑的本科輟學者,但經過一段時間積累後,已具備了直接從事前沿研究的能力,並得到了幾位前輩的認可。[3]
1842年,他在《新數學年刊》(Nouvelles Annales de Mathématiques)上發表了自己的第1篇原創論文,討論了阿貝爾關於5次方程代數不可解性的一個引理的簡化證明。[1]1843年至1844年,埃爾米特曾與當時正在研究橢圓函數的卡爾·雅可比多次通信。在雅可比最後的成品中,收錄了2篇埃爾米特寫的文章。其中一篇的內容是如何對阿貝爾曾給出的有關阿貝爾函數的一個定理加以推廣,另一篇的內容則涉及橢圓函數的函數變換。[1]埃爾米特曾獨立發現一些特殊微分方程的通解可用Θ函數表示,並利用傅立葉級數研究它們的性質。[3]埃爾米特在1843年左右的一些想法還可能直接啟發劉維爾在1年後發現了1個劉維爾定理。[3]
1847年,他參加並通過了高中畢業生考試(examinations for the baccalauréat)。[3]1848年,埃爾米特被曾經將他勸退的巴黎綜合理工學院聘用,擔任教授和入學考試考官。[1]這次他不再是以學生的身份回來,而是搖身一變,直接成為了學校教職員工。1856年,他不幸得了天花,虔誠信教的前輩柯西給了他很大的鼓勵以熬過病痛的折磨。[3]1856年,受一位曾照顧他生活的修女和柯西的共同影響,病癒後的埃爾米特決定重拾宗教禮節(practice of his religion)。[1]7月14日,法國科學院因雅可·比內去世而多出了一個空缺,埃爾米特被選上從而補上了空缺。[1]1869年[1],他繼耶安-瑪希·杜阿莫後也成為巴黎綜合理工的數學教授。埃爾米特在崗位上一直干到了1876年[1],而巴黎科學院的職務則伴隨了他一生。1862年至1873年間,他常會以演講者(lecturer,此處應該不是指職稱名稱)身份在高等師範學校辦講座。[1]70歲生日時,一家國際數學協會為其主辦了一場大型的慶祝活動。埃爾米特在活動中被人們選為法國榮譽軍團勳章之「大軍官勛位」。[1]他的才華受到廣泛認可,收穫了來自他人的眾多讚譽,而這並非是每個科研工作者在有生之年都能享受到的福氣。[5]
埃爾米特推崇啟發式教學,保爾·阿佩爾曾上過他教授的高等分析與高等代數課程。與其學生湯姆斯·斯蒂爾吉斯的通信也使他的教學嘗試受益良多。[1]他在教學研究上下了很多功夫。他不喜歡在教學時和繁難的證明細節死磕,而是追求儘量簡明而優美的講法。[1]他的研究成果多集中於橢圓函數論與數論領域。[1]1858年,他用橢圓函數給出了5次方程的一般解。[1]1873年,他證明了自然對數的底數e是超越數,並啟發林德曼於1882年給出了圓周率也是超越數的證明。[1]
1901年,埃爾米特去世,葬於巴黎蒙帕納斯公墓。晚年的他曾遭受氣喘病的煩擾。[5]1903年,他與學生斯蒂爾吉斯的往來書信對外公開。他的其它一部分工作後由其女婿埃米爾·皮卡整理並發表。[6]
埃爾米特有2個女兒,女婿分別是知名數學家埃米爾·皮卡與工程師喬治·佛何斯蒂。
1858年,他利用橢圓模函數,得出求解五次方程的一般方法。此前的1824年,尼爾斯·阿貝爾發表了一個重要證明,指出任意的5次代數方程不存在用含根號的代數式表達的一般解。而埃爾米特則成為第一個用非初等函數(即超越函數)表示出5次方程一般解的人。
在1861年魏爾斯特拉斯發現無處可微的連續曲線以後,埃爾米特有如下著名的評論:「我恐懼地顫抖了一下,轉過身去,遠離這個沒有導數的函數的可悲的瘟疫。」[來源請求]
1873年,他第一個證明了e,也就是自然對數的底,是一個超越數。約瑟夫·劉維爾在此前的1844年曾第一個證明了超越數是存在的[7],並於1851年給出了1個用無限位十進制小數形式表示的超越數,即劉維爾數。而埃爾米特的方法後來被費爾迪南·馮·林德曼用於證明π的超越性。
其它工作可見於以下作品[1]:
- 《巴黎綜合理工學院分析學教程》("Cours d'analyse de l'Ecole Polytechnique"), Paris, 1873.
- 《科學人員的事業道路》("Cours professé à la Faculté des Sciences"), edited by Andoyer, 4th ed., Paris, 1891.
- 《通信錄》("Correspondance"), edited by Baillaud and Bourget, Paris, 1905, 2 vols.
- 《夏爾·埃爾米特的作品》("Oeuvres de Charles Hermite"), edited by Picard for the Academy of Sciences, 2 vols., Paris, 1905 and 1908.
坊間關於埃爾米特生平經歷的文章,認為埃爾米特數學考試成績經常不及格,大學畢業後考不上好的研究所,且痛恨應試教育。[8][9]台灣網絡的一篇類似內容的文章[10]並以E·T·貝爾的書《數學大師:從芝諾到龐加萊》作為參考資料。但E·T·貝爾的書在介紹埃爾米特的第24章中雖然寫了埃爾米特鄙視學校考試,但並未提到一些與本文所引述的內容。[4]科學網(中國科學院和中國工程院等共同主辦)在轉載時則例行慣例地在正文下方提醒了讀者需自己留心文章的真實性。[11]由於歷史久遠,關於埃爾米特的生平史實數據又流傳不多,因此對於這位令人尊敬的數學家在數學專業外的生平,確實有難以精確考究的不確定性,這是對其生平有興趣者需要留意的地方。
Paul Henry Linehan. Charles Hermite - Catholic Encyclopedia Volume 7. 1913年 (英語).
J. J. O'Connor; E. F. Robertson. Charles Hermite [夏爾·埃爾米特]. 蘇格蘭聖安德魯斯大學(University of St Andrews, Scotland). [2016-01-01]. (原始內容存檔於2019-10-22) (英語). Charles Hermite's father was Ferdinand Hermite and his mother was Madeleine Lallemand. Ferdinand Hermite was a trained engineer and he worked in this capacity in a salt mine near Dieuse. After he married Madeleine he joined in the draper's trade in which her family were involved. However he was an artistic man who always wanted to pursue art as a career. He had his wife look after the draper's business and he took up art. Charles was the sixth of his parents seven children and when he was about seven years old his parents left Dieuse and went to live in Nancy to where the business had moved.","Charles was something of a worry to his parents for he had a defect in his right foot which meant that he moved around only with difficulty.","Charles attended the Collège de Nancy, then went to Paris where he attended the Collège Henri. In 1840-41 he studied at the Collège Louis-le-Grand where some fifteen years earlier Galois had studied. In fact he was taught mathematics there by Louis Richard who had taught Galois. In some ways Hermite was similar to Galois for he preferred to read papers by Euler, Gauss and Lagrange rather than work for his formal examinations.","If Hermite neglected the studies that he should have concentrated on, he was showing remarkable research ability publishing two papers while at Louis-le-Grand. Also like Galois he was attracted by the problem of solving algebraic equations and one of the two papers attempted to show that the quintic cannot be solved in radicals.","Again like Galois, Hermite wanted to study at the École Polytechnique and he took a year preparing for the examinations. He was tutored by Catalan in 1841-42 and certainly Hermite fared better than Galois had done for he passed. However it was not a glorious pass for he only attained sixty-eighth place in the ordered list. After one year at the École Polytechnique Hermite was refused the right to continue his studies because of his disability. Clearly this was an unfair decision and some important people were prepared to take up his case and fight for him to have the right to continue as a student at the École Polytechnique. The decision was reversed so that he could continue his studies but strict conditions were imposed. Hermite did not find these conditions acceptable and decided that he would not graduate from the École Polytechnique.","Hermite made friends with important mathematicians at this time and frequently visited Joseph Bertrand. On a personal note this was highly significant for he would marry Joseph Bertrand's sister...he began corresponding with Jacobi and...he was already producing research which was ranking as a leading world-class mathematician.","...show that Hermite had discovered some differential equations satisfied by theta-functions and he was using Fourier series to study them. He had found general solutions to the equations in terms of theta-functions...it is likely that his ideas from around 1843 helped Liouville to his important 1844 results which include the result now known as Liouville's theorem.","After spending five years working towards his degree he took and passed the examinations for the baccalauréat and licence which he was awarded in 1847. In the following year he was appointed to the École Polytechnique, the institution which had tried to prevent him continuing his studies some four years earlier; he was appointed répétiteur and admissions examiner.","On 14 July 1856 Hermite was elected to the Académie des Sciences. However, despite this achievement, 1856 was a bad year for Hermite for he contracted smallpox. It was Cauchy who, with his strong religious conviction, helped Hermite through the crisis.
E·T·貝爾; 徐源 (譯者). Men of Mathematics: The Lives and Achievements of the Great Mathematicians from Zeno to Poincare [數學大師:從芝諾到龐加萊]. 當代科普名著系列,哲人石叢書. 上海科技教育出版社. 2004年12月1日. ISBN 9787542834300 (法語).
Halsted, George. Biography: Charles Hermite [人物傳:夏爾·埃爾米特]. 美國數學月刊(The American Mathematical Monthly). June - July, 8: 131–133 [2015-12-31]. (原始內容存檔於2019-05-21) (英語). The French geometer had the good fortune not granted all great men to see recognized in his lifetime by the scientific world his extraordinary merit. The 24th of December, 1892, his sixtieth birthday, the friends, the disciples, the admirers of the great geometer assembled at the Sorbonne to present him the gold medal struck in his honor by international subscription.","Hermite retained to the last day of his life his privileged intelligence; but his body suffered. In a long letter of his, a few days before his death, he complained of his attacks of asthma and of the lack of appetite and of sleep: he seemed to forsee the nearness of his end...
Aubrey J. Kempner. On Transcendental Numbers [論超越數]. Transactions of the American Mathematical Society (American Mathematical Society). October 1916, 17 (4): 476–482. JSTOR 1988833. doi:10.2307/1988833 (英語).
不及格的天才数学家——埃尔米特. 少先隊員:知識路 (維普網中文科技期刊資料庫). 2015年, (第7期) (中文).