如果一個實數 x {\displaystyle x} 滿足,對任意正整數 n {\displaystyle n} ,存在整數 p , q {\displaystyle p,q} ,其中 q > 1 {\displaystyle q>1} 有 0 < | x − p q | < 1 q n {\displaystyle 0<\left|x-{\frac {p}{q}}\right|<{\frac {1}{q^{n}}}} 就把 x {\displaystyle x} 叫做劉維爾數。 法國數學家劉維爾在1844年證明了所有劉維爾數都是超越數[1],第一次說明了超越數的存在。 基本性質 容易證明,劉維爾數一定是無理數。若不然,則 x = c d , ( c , d ∈ Z , d > 0 ) {\displaystyle x={\frac {c}{d}},(c,d\in \mathbb {Z} ,d>0)} 。 取足夠大的 n {\displaystyle n} 使 2 n − 1 > d {\displaystyle {2^{n-1}}>d} ,在 c d ≠ p q {\displaystyle {\frac {c}{d}}\neq {\frac {p}{q}}} 時有 | x − p q | = | c d − p q | = | c q − d p d q | ≥ 1 d q > 1 2 n − 1 q ≥ 1 q n {\displaystyle \left|x-{\frac {p}{q}}\right|=\left|{\frac {c}{d}}-{\frac {p}{q}}\right|=\left|{\frac {cq-dp}{dq}}\right|\geq {\frac {1}{dq}}>{\frac {1}{2^{n-1}q}}\geq {\frac {1}{q^{n}}}} 與定義矛盾。 劉維爾常數 即 c = ∑ j = 1 ∞ 10 − j ! = 0.110001000000000000000001000 … {\displaystyle c=\sum _{j=1}^{\infty }10^{-j!}=0.110001000000000000000001000\ldots } 這是一個劉維爾數。取 p n = ∑ j = 1 n 10 n ! − j ! , q n = 10 n ! {\displaystyle p_{n}=\sum _{j=1}^{n}10^{n!-j!},\quad q_{n}=10^{n!}} 那麼對於所有正整數 n {\displaystyle n} | c − p n q n | = ∑ j = n + 1 ∞ 10 − j ! = 10 − ( n + 1 ) ! + 10 − ( n + 2 ) ! + ⋯ < 10 ⋅ 10 − ( n + 1 ) ! ≤ ( 10 − n ! ) n = 1 q n n . {\displaystyle \left|c-{\frac {p_{n}}{q_{n}}}\right|=\sum _{j=n+1}^{\infty }10^{-j!}=10^{-(n+1)!}+10^{-(n+2)!}+{}\cdots <10\cdot 10^{-(n+1)!}\leq {\Big (}10^{-n!}{\Big )}^{n}={\frac {1}{{q_{n}}^{n}}}.} 超越性 所有劉維爾數都是超越數,但反過來並不對。例如,著名的e和 π {\displaystyle \pi } 就不是劉維爾數。實際上,有不可數多的超越數都不是劉維爾數。 證明 劉維爾定理:若無理數 α {\displaystyle \alpha } 是代數數,即整係數 n {\displaystyle n} 次多項式 f {\displaystyle f} 的根,那麼存在實數 A > 0 {\displaystyle A>0} ,對於所有 p , q ∈ Z , q > 0 {\displaystyle p,q\in \mathbb {Z} ,q>0} 有 | α − p q | > A q n {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert >{\frac {A}{q^{n}}}} 證明:令 M = max { | f ′ ( x ) | | x ∈ [ α − 1 , α + 1 ] } {\displaystyle M=\max \left\{\left|f'(x)\right||x\in \left[\alpha -1,\alpha +1\right]\right\}} ,記 f {\displaystyle f} 的其它的不重複的根為 α 1 , α 2 , . . . , α m {\displaystyle \alpha _{1},\alpha _{2},...,\alpha _{m}} ,取這樣的A 0 < A < min ( 1 , 1 M , | α − α 1 | , | α − α 2 | , … , | α − α m | ) {\displaystyle 0<A<\min \left(1,{\frac {1}{M}},\left\vert \alpha -\alpha _{1}\right\vert ,\left\vert \alpha -\alpha _{2}\right\vert ,\ldots ,\left\vert \alpha -\alpha _{m}\right\vert \right)} 如果存在使定理不成立的 p , q {\displaystyle p,q} ,就有 | α − p q | ≤ A q n ≤ A < min ( 1 , 1 M , | α − α 1 | , | α − α 2 | , … , | α − α m | ) {\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert \leq {\frac {A}{q^{n}}}\leq A<\min \left(1,{\frac {1}{M}},\left\vert \alpha -\alpha _{1}\right\vert ,\left\vert \alpha -\alpha _{2}\right\vert ,\ldots ,\left\vert \alpha -\alpha _{m}\right\vert \right)} 那麼, p q ∈ [ α − 1 , α + 1 ] ∧ p q ∉ { α 1 , α 2 , . . . , α m } {\displaystyle {\frac {p}{q}}\in \left[\alpha -1,\alpha +1\right]\land {\frac {p}{q}}\notin \left\{\alpha _{1},\alpha _{2},...,\alpha _{m}\right\}} 據拉格朗日中值定理,存在 α {\displaystyle \alpha } 和 p q {\displaystyle {\frac {p}{q}}} 之間的 x 0 {\displaystyle x_{0}} 使得 f ( α ) − f ( p / q ) = ( α − p / q ) ⋅ f ′ ( x 0 ) {\displaystyle f(\alpha )-f(p/q)=(\alpha -p/q)\cdot f'(x_{0})} 有 | ( α − p / q ) | = | f ( α ) − f ( p / q ) | / | f ′ ( x 0 ) | = | f ( p / q ) / f ′ ( x 0 ) | {\displaystyle \left\vert (\alpha -p/q)\right\vert =\left\vert f(\alpha )-f(p/q)\right\vert /\left\vert f'(x_{0})\right\vert =\left\vert f(p/q)/f'(x_{0})\right\vert \,} f {\displaystyle f} 是多項式,所以 | f ( p / q ) | = | ∑ i = 0 n c i p i q − i | = | ∑ i = 0 n c i p i q n − i | q n ≥ 1 q n {\displaystyle \left\vert f(p/q)\right\vert =\left\vert \sum _{i=0}^{n}c_{i}p^{i}q^{-i}\right\vert ={\frac {\left\vert \sum _{i=0}^{n}c_{i}p^{i}q^{n-i}\right\vert }{q^{n}}}\geq {\frac {1}{q^{n}}}} 由於 | f ′ ( x 0 ) | ≤ M {\displaystyle \left|f'(x_{0})\right|\leq M} 和 1 / M > A {\displaystyle 1/M>A} | α − p / q | = | f ( p / q ) / f ′ ( x 0 ) | ≥ 1 / ( M q n ) > A / q n ≥ | α − p / q | {\displaystyle \left\vert \alpha -p/q\right\vert =\left\vert f(p/q)/f'(x_{0})\right\vert \geq 1/(Mq^{n})>A/q^{n}\geq \left\vert \alpha -p/q\right\vert } 矛盾。 證明劉維爾數是超越數:有劉維爾數 x {\displaystyle x} ,它是無理數,如果它是代數數則 ∃ n ∈ Z , A > 0 ∀ p , q ( | x − p q | > A q n ) {\displaystyle \exists n\in \mathbb {Z} ,A>0\forall p,q\left(\left\vert x-{\frac {p}{q}}\right\vert >{\frac {A}{q^{n}}}\right)} 取滿足 1 2 r ≤ A {\displaystyle {\frac {1}{2^{r}}}\leq A} 的正整數 r {\displaystyle r} ,並令 m = r + n {\displaystyle m=r+n} ,存在整數 a , b {\displaystyle a,b} 其中 b > 1 {\displaystyle b>1} 有 | x − a b | < 1 b m = 1 b r + n = 1 b r b n ≤ 1 2 r 1 b n ≤ A b n {\displaystyle \left|x-{\frac {a}{b}}\right|<{\frac {1}{b^{m}}}={\frac {1}{b^{r+n}}}={\frac {1}{b^{r}b^{n}}}\leq {\frac {1}{2^{r}}}{\frac {1}{b^{n}}}\leq {\frac {A}{b^{n}}}} 與上式矛盾。故劉維爾數是超越數。 參考文獻 [1]Liouville, Joseph. Mémoires et communications. Comptes rendus de l'Académie des Sciences. [2023-01-02]. (原始內容存檔於2023-02-21). 參見 丟番圖逼近外部連結 The Beginning of Transcendental Numbers (頁面存檔備份,存於網際網路檔案館)Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.