1595年12月,克卜勒被介紹給了芭芭拉·穆勒(B. Müller),一個帶著幼小女兒——吉瑪·德威納維爾德(Gemma van Dvijneveldt)的23歲寡婦(結過兩次婚),並開始向她求愛。穆勒不但是她前兩任丈夫財產的女繼承人,同時也是一名成功磨坊老闆的女兒。儘管克卜勒有著高貴的身分,但是她父親約布斯特(Jobst)最初也反對他們的婚姻;雖然克卜勒繼承了他祖父的高貴身分,但是他的貧困使他與芭芭拉不般配。克卜勒完成《宇宙的神秘》之後,約布斯特動了憐憫之心,但是這個婚約差點告吹,因為克卜勒外出專注於出版的各項事宜。然而,幫忙建立該婚配的教會官員強迫穆勒遵守他們的協定。1597年4月27日,芭芭拉和克卜勒結婚。[18]
在《新天文學》完稿之後的幾年,克卜勒大部分的研究都集中在《魯道夫星表》的編撰以及基於該星表的一整套星曆(對行星和星位的具體預言,但是這兩項工作在多年之後都沒完成)。他還嘗試(不成功)與義大利天文學家喬凡尼·安東尼歐·馬吉尼(Giovanni Antonio Magini)的合作。他的其它作品涉及年代學(特別是耶穌一生中事件的日期記錄)與占星學[特別是對轟動性的大災難預言的批判,比如哈利薩耶斯·羅斯林(Helisaeus Roeslin)的預言]。[39]
克卜勒在哲學和科學編史學方面的作用超出了其在天文學與自然哲學的歷史發展中的作用。克卜勒及其天體運動定律對早期的天文學史非常重要,比如孟都克拉(Jean-Étienne Montucla)1758年的《數學歷史》以及德朗布爾(Jean-Baptiste Delambre)1821年的《現代天文學歷史》。這些和其它從啟蒙運動的視角編寫的歷史以懷疑和反對的態度看待克卜勒的形上學和宗教主張,但是到了後來的浪漫時期,自然哲學家們將這些元素視為他成功的關鍵。威廉姆·維赫維爾在他有著重要影響力的作品《歸納法科學的歷史》(1837年)中,發現克卜勒是歸納法科學天才的原型;在他的作品《哲學與歸納科學》(1840年)中,維赫維爾將克卜勒稱為科學方法最進階形式的體現。類似地,在凱薩琳皇后購買了克卜勒手稿之後第一個對其進行廣泛研究的人——恩斯特·弗里德利希·阿貝爾特(Ernst F. Apelt)認定克卜勒是「科學革命」的鑰匙。阿貝爾特看過克卜勒的關於數學、美感、物理學以及作為整個思想體系一部分的神學的觀點,對克卜勒的生活與工作首次進行了廣泛的研究。[79]
對於克卜勒在「科學革命」中的地位的爭論也產生了一系列哲學和大眾的作品。其中亞瑟·凱斯特勒所作的《夢遊者》(1959)是最具影響力的作品之一。在該作品中,克卜勒無疑是這場革命的英雄(不管是道德上、神學上或認知上)[82]。科學哲學家,如查爾斯·桑德斯·皮爾斯、諾伍德·拉塞爾·漢森(Norwood R. Hanson)、史蒂芬·圖爾明(S. Toulmin)與卡爾·波珀都重複的求助於克卜勒:不可比性實例、類比推理、證偽性與許多其它的哲學概念都在克卜勒的作品中出現過。物理學家沃夫岡·包立甚至使用克卜勒與羅伯特·弗勒德的先後之爭來探究分析心理學對科學研究的意義[83]。約翰·博納維爾(J. Banville)所作的非常受歡迎的甚至是玄幻的歷史小說《克卜勒》(1981),對凱斯特勒(Koestler)的敘事性非小說與科學哲學中的許多主題進行了探究[84]。更為玄幻的是最近的一部非小說類作品——《天國的密謀》(2004),該書聲稱克卜勒謀殺了第谷以取得他的資料[85]。克卜勒獲得了作為科學現代性的象徵與超出時代的人物的大眾形象;科普作家卡爾·薩根稱他為「第一個天體物理學家與最後一個科學占星家」[86]。
在奧地利,克卜勒留下的歷史遺產使他成為一枚銀質收藏幣的圖案之一:2002年9月10日的10歐元約翰尼斯·克卜勒銀質硬幣。該硬幣的反面是克卜勒的畫像,他曾經在格拉茲及附近地區教學。克卜勒私下與漢斯·烏爾里奇·艾根伯格親王(Hans Ulrich von Eggenberg)熟識,他很可能對艾根伯格城堡的建造產生了影響(這枚硬幣正面的圖案)。硬幣上,在他的前面鑲嵌了一個《宇宙的神秘》中的球體與多面體模型。[87]
Barker, Peter; Goldstein, Bernard R. "Theological Foundations of Kepler's Astronomy", Osiris, 2nd Series, Vol. 16, Science in Theistic Contexts: Cognitive Dimensions(2001), p. 96.
Westman, Robert S. "Kepler's Early Physico-Astrological Problematic," Journal for the History of Astronomy(英語:Journal for the History of Astronomy), 32(2001): 227–36.
"Kepler's decision to base his causal explanation of planetary motion on a distance-velocity law, rather than on uniform circular motions of compounded spheres, marks a major shift from ancient to modern conceptions of science.... [Kepler] had begun with physical principles and had then derived a trajectory from it, rather than simply constructing new models. In other words, even before discovering the area law, Kepler had abandoned uniform circular motion as a physical principle." Peter Barker and Bernard R. Goldstein, "Distance and Velocity in Kepler's Astronomy", Annals of Science, 51 (1994): 59–73, at p. 60.
Caspar, Kepler, pp. 181–85. The full title is Tertius Interveniens, das ist Warnung an etliche Theologos, Medicos vnd Philosophos, sonderlich D. Philippum Feselium, dass sie bey billicher Verwerffung der Sternguckerischen Aberglauben nict das Kindt mit dem Badt aussschütten vnd hiermit jhrer Profession vnwissendt zuwider handlen, translated by C. Doris Hellman as "Tertius Interveniens, that is warning to some theologians, medics and philosophers, especially D. Philip Feselius, that they in cheap condemnation of the star-gazer's superstition do not throw out the child with the bath and hereby unknowingly act contrary to their profession."
Ferguson, Thomas S., Who solved the secretary problem ?, Statistical Science, 1989, 4 (3): 282–289 [2014-10-30], doi:10.1214/ss/1177012493, (原始內容存檔於2021-04-18), When the celebrated German astronomer, Johannes Kepler (1571-1630), lost his first wife to cholera in 1611, he set about finding a new wife using the same methodical thoroughness and careful consideration of the data that he used in finding the orbit of Mars to be an ellipse... The process consumed much of his attention and energy for nearly 2 years...
By 1621 or earlier, Kepler recognized that Jupiter's moons obey his third law.
Kepler contended that rotating massive bodies communicate their rotation to their satellites, so that the satellites are swept around the central body; thus the rotation of the Sun drives the revolutions of the planets and the rotation of the Earth drives the revolution of the Moon. In Kepler's era, no one had any evidence of Jupiter's rotation. However, Kepler argued that the force by which a central body causes its satellites to revolve around it, weakens with distance; consequently, satellites that are farther from the central body revolve slower. Kepler noted that Jupiter's moons obeyed this pattern and he inferred that a similar force was responsible. He also noted that the orbital periods and semi-major axes of Jupiter's satellites were roughly related by a 3/2 power law, as are the orbits of the six (then known) planets. However, this relation was approximate: the periods of Jupiter's moons were known within a few percent of their modern values, but the moons』 semi-major axes were determined less accurately.
Kepler discussed Jupiter's moons in his Epitome Astronomiae Copernicanae [Summary of Copernican Astronomy](Linz ("Lentiis ad Danubium"),(Austria): Johann Planck, 1622), book 4, part 2, page 554 (頁面存檔備份,存於網際網路檔案館).(For a more modern and legible edition, see: Christian Frisch, ed., Joannis Kepleri Astronomi Opera Omnia, vol. 6 (Frankfurt-am-Main, (Germany): Heyder & Zimmer, 1866), page 361 (頁面存檔備份,存於網際網路檔案館).)
Original : 4) Confirmatur vero fides hujus rei comparatione quatuor Jovialium et Jovis cum sex planetis et Sole. Etsi enim de corpore Jovis, an et ipsum circa suum axem convertatur, non ea documenta habemus, quae nobis suppetunt in corporibus Terrae et praecipue Solis, quippe a sensu ipso: at illud sensus testatur, plane ut est cum sex planetis circa Solem, sic etiam se rem habere cum quatuor Jovialibus, ut circa corpus Jovis quilibet, quo longius ab illo potest excurrere, hoc tardius redeat, et id quidem proportione non eadem, sed majore, hoc est sescupla proportionis intervallorum cujusque a Jove: quae plane ipsissima est, qua utebantur supra sex planetae. Intervalla enim quatuor Jovialium a Jove prodit Marius in suo Mundo Joviali ista: 3, 5, 8, 13 (vel 14 Galilaeo)…Periodica vero tempora prodit idem Marius ista: dies 1. h. 18 1/2, dies 3 h. 13 1/3, dies 7 h. 3, dies 16 h. 18: ubique proportio est major quam dupla, major igitur quam intervallorum 3, 5, 8, 13 vel 14, minor tamen quam quadratorum, qui duplicant proportiones intervallorum, sc. 9, 25, 64, 169 vel 196, sicut etiam sescupla sunt majora simplis, minora vero duplis.
Translation :(4)However, the credibility of this [argument] is proved by the comparison of the four [moons] of Jupiter and Jupiter with the six planets and the Sun. Because, regarding the body of Jupiter, whether it turns around its axis, we don't have proofs for what suffices for us [regarding the rotation of ] the body of the Earth and especially of the Sun, certainly [as reason proves to us]: but reason attests that, just as it is clearly [true] among the six planets around the Sun, so also it is among the four [moons] of Jupiter, because around the body of Jupiter any [satellite] that can go farther from it orbits slower, and even that [orbit's period] is not in the same proportion, but greater [than the distance from Jupiter]; that is, 3/2(sescupla)of the proportion of each of the distances from Jupiter, which is clearly the very [proportion] as [is used for] the six planets above. In his [book] The World of Jupiter [Mundus Jovialis, 1614], [Simon] Mayr [1573-1624] presents these distances, from Jupiter, of the four [moons] of Jupiter: 3, 5, 8, 13(or 14 [according to] Galileo)… Mayr presents their time periods: 1 day 18 1/2 hours, 3 days 13 1/3 hours, 7 days 3 hours, 16 days 18 hours: for all [of these data] the proportion is greater than double, thus greater than [the proportion] of the distances 3, 5, 8, 13 or 14, although less than [the proportion] of the squares, which double the proportions of the distances, namely 9, 25, 64, 169 or 196, just as [a power of] 3/2 is also greater than 1 but less than 2.
The opening of the movie Mars et Avril(英語:Mars et Avril) by Martin Villeneuve(英語:Martin Villeneuve) is based on German astronomer Johannes Kepler’s cosmological model from the 17th century, Harmonices Mundi, in which the harmony of the universe is determined by the motion of celestial bodies. Benoît Charest(英語:Benoît Charest) also composed the score according to this theory.
Westfall, Never at Rest, pp. 143, 152, 402–03; Toulmin and Goodfield, The Fabric of the Heavens, p 248; De Gandt, 'Force and Geometry in Newton's Principia', chapter 2; Wolf, History of Science, Technology and Philosophy, p. 150; Westfall, The Construction of Modern Science, chapters 7 and 8
William Donahue, "A Novelist's Kepler," Journal for the History of Astronomy, Vol. 13 (1982), pp. 135–136; "Dancing the grave dance: Science, art and religion in John Banville's Kepler," English Studies, Vol. 86, no. 5 (October 2005), pp. 424–438
Marcelo Gleiser(英語:Marcelo Gleiser), "Kepler in the Dock", review of Gilder and Gilder's Heavenly Intrigue, Journal for the History of Astronomy, Vol. 35, pt. 4 (2004), pp. 487–489
Quote from Carl Sagan, Cosmos: A Personal Voyage(英語:Cosmos: A Personal Voyage), episode III: "The Harmony of the Worlds". Kepler was hardly the first to combine physics and astronomy; however, according to the traditional (though disputed) interpretation of the Scientific Revolution, he would be the first astrophysicist in the era of modern science.
"...in 1614, Johannes Kepler published his book "De vero anno quo aeternus dei filius humanum naturam in utero benedictae Virginis Mariae assumpsit", on the chronology related to the Star of Bethlehem.", The Star of Bethlehem, Kapteyn Astronomical Institute(英語:Kapteyn Astronomical Institute)
The most complete biography of Kepler is Max Caspar's Kepler. Though there are a number of more recent biographies, most are based on Caspar's work with minimal original research; much of the information cited from Caspar can also be found in the books by Arthur Koestler, Kitty Ferguson, and James A. Connor. Owen Gingerich's The Eye of Heaven builds on Caspar's work to place Kepler in the broader intellectual context of early-modern astronomy. Many later studies have focused on particular elements of his life and work. Kepler's mathematics, cosmological, philosophical and historical views have been extensively analyzed in books and journal articles, though his astrological work—and its relationship to his astronomy—remains understudied.
參考資料
Andersen, Hanne; Peter Barker; and Xiang Chen. The Cognitive Structure of Scientific Revolutions, chapter 6: "The Copernican Revolution." New York: Cambridge University Press, 2006. ISBN 978-0-521-85575-4
Barker, Peter and Bernard R. Goldstein: "Theological Foundations of Kepler's Astronomy". Osiris, Volume 16. Science in Theistic Contexts.University of Chicago Press, 2001, pp. 88–113
Caspar, Max. Kepler; transl. and ed. by C. Doris Hellman; with a new introduction and references by Owen Gingerich; bibliographic citations by Owen Gingerich and Alain Segonds. New York: Dover, 1993. ISBN 978-0-486-67605-0
Connor, James A. Kepler's Witch: An Astronomer's Discovery of Cosmic Order Amid Religious War, Political Intrigue, and the Heresy Trial of His Mother. HarperSanFrancisco, 2004. ISBN 978-0-06-052255-1
Ferguson, Kitty. The nobleman and his housedog: Tycho Brahe and Johannes Kepler: the strange partnership that revolutionized science. London: Review, 2002. ISBN 978-0-7472-7022-5 – published in the US as: Tycho & Kepler: the unlikely partnership that forever changed our understanding of the heavens. New York: Walker, 2002. ISBN 978-0-8027-1390-2
Gilder, Joshua and Anne-Lee Gilder: Heavenly Intrigue: Johannes Kepler, Tycho Brahe, and the Murder Behind One of History's Greatest Scientific Discoveries, Doubleday(May 18, 2004). ISBN 978-0-385-50844-5 Reviews bookpage.com, crisismagazine.com
Gingerich, Owen(英語:Owen Gingerich). The Eye of Heaven: Ptolemy, Copernicus, Kepler. American Institute of Physics, 1993. ISBN 978-0-88318-863-7(Masters of modern physics; v. 7)
Gingerich, Owen: "Kepler, Johannes" in Dictionary of Scientific Biography, Volume VII. Charles Coulston Gillispie, editor. New York: Charles Scribner's Sons, 1973
Greenbaum and Boockmann: "Kepler's Astrology", Culture and Cosmos Vol. 14. Special Double Issue, 2012.
Jardine, Nick: "Koyré’s Kepler/Kepler's Koyré," History of Science, Vol. 38 (2000), pp. 363–376
Kepler, Johannes, et al. Great Books of the Western World. Volume 16: Ptolemy, Copernicus, Kepler, Chicago: Encyclopædia Britannica, Inc., 1952.(contains English translations by of Kepler's Epitome, Books IV & V and Harmonices Book 5)
Kuhn, Thomas S.The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, MA: Harvard University Press, 1957. ISBN 978-0-674-17103-9
Lindberg, David C.: "The Genesis of Kepler's Theory of Light: Light Metaphysics from Plotinus to Kepler." Osiris, N.S. 2. University of Chicago Press, 1986, pp. 5–42.
Lear, John. Kepler's Dream. Berkeley: University of California Press, 1965
M.T.K Al-Tamimi: Great collapse Kepler's first law, Natural Science 2 (2010), ISBN 2150 – 4091
North, John. The Fontana History of Astronomy and Cosmology, Fontana Press, 1994. ISBN 978-0-00-686177-5
Pannekoek, Anton: A History of Astronomy, Dover Publications Inc 1989. ISBN 978-0-486-65994-7
Pauli, Wolfgang. Wolfgang Pauli —Writings on physics and philosophy, translated by Robert Schlapp and edited by P. Enz and Karl von Meyenn(Springer Verlag, Berlin, 1994). See section 21, The influence of archetypical ideas on the scientific theories of Kepler, concerning Johannes Kepler and Robert Fludd(英語:Robert Fludd)(1574–1637). ISBN 978-3-540-56859-9
Schneer, Cecil: "Kepler's New Year's Gift of a Snowflake." Isis(英語:Isis (journal)), Volume 51, No. 4. University of Chicago Press, 1960, pp. 531–545.
Shapin, Steven. The Scientific Revolution. Chicago: University of Chicago Press, 1996. ISBN 978-0-226-75020-0
Stephenson, Bruce. Kepler's physical astronomy. New York: Springer, 1987. ISBN 978-0-387-96541-3(Studies in the history of mathematics and physical sciences; 13); reprinted Princeton:Princeton Univ. Pr., 1994. ISBN 978-0-691-03652-6