Remove ads
成像技术 来自维基百科,自由的百科全书
磁力共振掃描(英語:Magnetic Resonance Imaging,簡稱 MRI)是一種基於核磁共振原理、主要用於影像診斷學的醫學成像技術。使用該技術的磁力共振掃描儀(MRI scanner)由強磁場、梯度磁場、無線電波、計算機系統四大構件構成,以形成人體內解剖結構和生理過程的圖像。與計算機斷層掃描(CT)和正電子發射斷層掃描(PET)不同的是,MRI 不涉及X射線或電離輻射的使用。[1][2]
此條目可參照英語維基百科相應條目來擴充。 (2024年5月21日) |
磁力共振掃描 Magnetic resonance imaging | |
---|---|
ICD-9-CM | 88.91 |
MeSH | D008279 |
MedlinePlus | 003335 |
磁力共振掃描在醫院和診所廣泛應用於疾病的醫學診斷、分期和隨訪。與 CT 相比,MRI 在軟組織部位(如大腦或腹部)的圖像中能提供更好的對比度。然而,它可能會被患者認為不太舒服,因為受試者通常在一個狹窄並帶有噪音的管狀空間中進行長時間的測量,儘管「開放式」MRI設計大多緩解了這一點。此外,體內的植入物和其他不可移動的金屬可能會造成風險,並可能使一些患者無法安全地進行 MRI 檢查。[3][4]
磁力共振掃描的原理是對靜磁場中的人體施加特定頻率的射頻脈衝(即無線電波脈衝),使人體內水中的氫原子核受到其激勵而發生核磁共振,並釋放可被儀器接收的無線電波。由於該信號在體內不同結構環境中會有不同的衰減,人們可以通過外加梯度磁場檢測,從而以此重建並繪製成人體內部結構與功能圖像。現代核磁力共振掃描儀應用了快速變化的梯度磁場,使其成像速度得到大幅提升,並讓該技術在臨床診斷、科學研究的應用成為現實,推動了醫學、神經生理學和認知神經科學的發展。[5][6]
磁共振成像舊稱「核磁共振成像」(NMR imaging),後因其初次應用於醫學影像時,正處於冷戰時期,民眾誤以為該檢查具有核輻射,與放射性或核醫學技術相關,而改稱 MRI,去掉 nuclear 字樣,但其原理與 NMR 並無不同[7][8][9]。中國大陸稱磁共振成像[10],台灣稱磁振造影[11][12],香港稱磁力共振掃描[13]。
磁力共振掃描是隨着電子計算機、電子學、電路學、超導體等技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。此成像技術利用核磁共振原理,其中「核」指的是氫原子核,因為人體大約70%是由水組成的,另外有脂肪、蛋白質等,MRI即依賴這些分子中的氫原子的共振而造影。
當把物體放置在磁場中,用適當的電磁波照射它,以改變氫原子的旋轉排列方向,使之共振,然後分析它釋放的電磁波,由於不同的組織會產生不同的電磁波訊號,經電腦處理,就可以得知構成這一物體的原子核的位置和種類,據此可以繪製成物體內部的精確立體圖像。
原子核在進動中,吸收與原子核進動頻率相同的射頻脈衝,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈衝之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。
原子核帶正電荷並有自旋這一屬性,其自旋產生磁矩,稱為核磁矩。研究表明,核磁矩與原子核的自旋角動量S成正比,即
式中γ為比例係數,稱為原子核的旋磁比。在外磁場中,原子核自旋角動量的空間取向是量子化的,它在外磁場方向上的投影值可表示為
m為核自旋量子數。依據核磁矩與自旋角動量的關係,核磁矩在外磁場中的取向也是量子化的,它在磁場方向上的投影值為
對於不同的核,m分別取整數或半整數。在外磁場中,具有磁矩的原子核具有相應的能量,其數值可表示為
式中B為磁感應強度。可見,原子核在外磁場中的能量也是量子化的。由於磁矩和磁場的相互作用,自旋能量分裂成一系列分立的能階,相鄰的兩個能階之差。用頻率適當的電磁輻射照射原子核,如果電磁輻射光子能量恰好為兩相鄰核能階之差,則原子核就會吸收這個光子,發生核磁共振的頻率條件是:
式中為頻率,為角頻率。對於確定的核,旋磁比可被精確地測定。可見,通過測定核磁共振時輻射場的頻率,就能確定磁感應強度;反之,若已知磁感應強度,即可確定核的共振頻率。
採用調節頻率的方法來達到核磁共振。由線圈向樣品發無線電磁波,調變振盪器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續變化。當頻率正好與核磁共振頻率吻合時,射頻振盪器的輸出就會出現一個吸收峰,這可以在示波器上顯示出來,同時由頻率計即刻讀出這時的共振頻率值。核磁共振譜儀是專門用於觀測核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產生一個恆定的磁場;探頭置於磁極之間,用於探測核磁共振信號;譜儀是將共振信號放大處理並顯示和記錄下來。
MRI是一台巨大的圓筒狀機器,能在受檢者的周圍製造一個強烈磁場區的環境,藉由無線電波的脈衝撞擊身體細胞中的氫原子核,改變身體內氫原子的排列,當氫原子再次進入適當的位置排列時,會發出無線電訊號,此訊號藉由電腦的接收並加以分析及轉換處理,可將身體構造及器官中的氫原子活動,轉換成2D影像,因MRI運用了生化、物理特性來區分組織,獲得的影像會比電腦斷層更加詳細。[14]
由射頻接收器送來的信號經A/D轉換器,把模擬信號轉換成數碼訊號,根據與觀察層面各體素的對應關係,經計算機處理,得出層面圖像數據,再經D/A轉換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級顯示出欲觀察層面的圖像。
MRI被廣泛運用在運動相關傷害的診斷上,對近骨骼和骨骼周圍的軟組織,包括韌帶與肌肉,可呈現清晰影像,因此在脊椎及關節問題上,是極具敏感的檢查。
因MRI沒有輻射暴露的危險,因此經常被使用在生殖系統、乳房、骨盆及膀胱病的偵測及診斷上。
氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特徵量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時間T1、T2三個參數的差異,是MRI用於臨床診斷最主要的物理基礎。
當施加一射頻脈衝信號時,氫核能態發生變化,射頻過後,氫核返回初始能態,共振產生的電磁波便發射出來。原子核振動的微小差別可以被精確地檢測到,經過進一步的計算機處理,即可能獲得反應組織化學結構組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運動的資訊。這樣,病理變化就能被記錄下來。
人體2/3的重量為水分,如此高的比例正是磁力共振掃描技術能被廣泛應用於醫學診斷的基礎。人體內器官和組織中的水分並不相同,很多疾病的病理過程會導致水碎形態的變化,即可由磁共振圖像反應出來。
MRI所獲得的圖像非常清晰精細,大大提高了醫生的診斷效率,避免了剖胸或剖腹探查診斷的手術。由於MRI不使用對人體有害的X射線和易引起過敏反應的造影劑,因此對人體沒有損害。MRI可對人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內的解剖組織及相鄰關係,對病灶能更好地進行定位定性。對全身各系統疾病的診斷,尤其是早期腫瘤的診斷有很大的價值。
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的電腦斷層影像(computerized tomography, CT)相比,磁力共振掃描的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、準確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁力共振掃描技術進行檢查。具體說來有以下幾點:
雖然MRI對患者沒有致命性的損傷,但還是給患者帶來了一些不適感。在MRI診斷前應當採取必要的措施,把這種負面影響降到最低限度。其缺點主要有:
MRI系統可能對人體造成傷害的因素主要包括以下方面:
MRI在化學領域的應用沒有醫學領域那麼廣泛,主要是因為技術上的難題及成像材料上的困難,目前主要應用於以下幾個方面:
核磁共振分析技術是通過核磁共振譜線特徵參數(如譜線寬度、譜線輪廓形狀、譜線面積、譜線位置等)的測定來分析物質的分子結構與性質。它可以不破壞被測樣品的內部結構,是一種完全無損的檢測方法。同時,它具有非常高的分辨本領和精確度,而且可以用於測量的核也比較多,所有這些都優於其它測量方法。因此,核磁共振技術在物理、化學、醫療、石油化工、考古等方面獲得了廣泛的應用。
核磁共振的研究在近代取得很多的成果,相關工作曾榮獲多個諾貝爾獎。1946年,美國物理學家費利克斯·布洛赫 (Felix Bloch) 和愛德華·米爾斯·珀塞爾 (Edward Mills Purcell) 在質子中證明了這一現象。他們於1952年榮獲諾貝爾物理學獎。
核磁共振的相關研究還曾獲得兩項諾貝爾化學獎。1991年,瑞士人理查德·恩斯特(Richard Ernst)因其對高解像度核磁共振波譜方法的貢獻而獲的諾貝爾化學獎。2002 年,同樣來自瑞士的庫爾特·維思里希 (Kurt Wüthrich) 因其開發的核磁共振波譜技術用於測定溶液中生物大分子的三維結構而獲獎。
2003年10月6日,瑞典卡羅林斯卡醫學院宣佈,2003年諾貝爾生理學或醫學獎授予美國化學家保羅·勞特伯和英國物理學家彼得·曼斯菲爾德,以表彰他們在醫學診斷和研究領域內所使用的核磁力共振掃描技術領域的突破性成就。
勞特伯在紐約州立大學石溪分校化學系當副教授時看到因為儀器老舊,研究生與博士後研究員實驗皆做不出理想結果,於是苦思解決之道。勞特伯的貢獻是,在主磁場內附加一個不均勻的磁場,把梯度引入磁場中,從而創造了一種可視的用其他技術手段卻看不到的物質內部結構的二維結構圖像。他描述了怎樣把梯度磁體添加到主磁體中,然後能看到沉浸在重水中的裝有普通水的試管的交叉截面。除此之外沒有其他圖像技術可以在普通水和重水之間區分圖像。通過引進梯度磁場,可以逐點改變核磁共振電磁波頻率,通過對發射出的電磁波的分析,可以確定其信號來源。
曼斯菲爾德進一步發展了有關在穩定磁場中使用附加的梯度磁場理論,推動了其實際應用。他發現磁共振信號的數學分析方法,為該方法從理論走向應用奠定了基礎。這使得10年後磁力共振掃描成為臨床診斷的一種現實可行的方法。他利用磁場中的梯度更為精確地顯示共振中的差異。他證明,如何有效而迅速地分析探測到的信號,並且把它們轉化成圖像。曼斯菲爾德還提出了極快速的梯度變化可以獲得瞬間即逝的圖像,即面迴訊成像(echo-planar imaging, EPI)技術,成為20世紀90年代開始蓬勃興起的功能磁力共振掃描研究的主要手段。
值得一提的是,2003年諾貝爾物理學獎獲得者們在超導體和超流體理論上做出的開創性貢獻,也為開發核磁共振掃描儀提供了提供了重要的理論支持。例如,醫學用的核磁力共振掃描儀器就使用了超導材料。[15]
此外,在2003年10月10日的《紐約時報》和《華盛頓郵報》上,同時出現了佛納(Fonar)公司的一則整版廣告:「雷蒙德·達馬蒂安,應當與彼得·曼斯菲爾德和保羅·勞特布爾分享2003年諾貝爾生理學或醫學獎。沒有他,就沒有核磁力共振掃描技術。」指責諾貝爾獎委員會「篡改歷史」而引起廣泛爭議。事實上,對MRI的發明權歸屬問題已爭論了許多年,而且爭得頗為激烈。在學界看來,由於幾個相關人物的長期宣傳,達馬蒂安更多地被描繪成是一個生意人,而不是科學家。不過,有關的答案可能要相當長的一段時間以後才能有定論。
孕婦、心臟裝有節律器者、身體任何部位裝置有對磁力有感應的金屬者,需要與醫生進行評估,像是部份心臟節率器可以經過調整之後接受檢查。
美國食品與藥物管理局(FDA)於2006年6月發出警訊,中末期腎臟疾病及慢性腎衰竭患者使用含釓MRI顯影劑可能造成腎因性全身皮膚硬化症/腎因性纖維化皮膚病變(Nephrogenic Systemic Fibrosis/Nephrogenic Fibrosing Dermopathy,NSF/NFD)。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.