Remove ads
原子序數為44的化學元素 来自维基百科,自由的百科全书
此條目可參照英語維基百科相應條目來擴充。 |
冷的時候,釕的延性較小,即使純粹單晶也很容易彎曲。金屬釕可用電弧或電子束熔化。釕通常加熱至1500℃時才能加工成細絲或薄板。[9]
釕有四種晶態,在標準情況下不會失去光澤,它加熱到 800 °C(1,070 K)時氧化。釕溶於熔融鹼,產生釕酸鹽(RuO2−
4)。釕不與王水反應,但在高溫下會被鹵素攻擊。[10]事實上,釕易被強氧化劑(比如高碘酸,熱濃硒酸和鹼性次氯酸鹽等)侵蝕。[11]少量的釕可以增加鉑和鈀的硬度。鈦的腐蝕抗性通過添加少量釕,會顯着增加。[10]金屬可以通過電鍍和熱分解鍍上釕。已知釕鉬合金在低於10.6 K的溫度下具有超導性。[10]釕是唯一可以呈現+8氧化態的4d過渡金屬。儘管如此,這個價態的穩定性也低於較重的同類物鋨。與鐵類似但與鋨不同,釕可以在+2和+3的較低氧化態下形成水合陽離子。[12]
在鉬的最大值之後,釕是第一個在4d過渡金屬中的熔點、沸點以及原子化焓呈下降趨勢的,因為4d殼層已超過一半,電子對金屬鍵的形成貢獻較小。(前一個元素鍀有不尋常低的值,因為它的電子排布 [Kr]4d55s2 呈半充滿結構,儘管它違背趨勢的距離並沒有像3d過渡金屬中的錳這麼遠。)[13]與較輕的同類物鐵不同,釕在室溫下是順磁性的,因為鐵的居里點高於室溫。[14]
一些常見的釕離子在酸性水溶液中的還原電位如下:[15]
0.455 V | Ru2+ + 2e− | ↔ Ru |
0.249 V | Ru3+ + e− | ↔ Ru2+ |
1.120 V | RuO2 + 4H+ + 2e− | ↔ Ru2+ + 2H2O |
1.563 V | RuO2− 4 + 8H+ + 4e− |
↔ Ru2+ + 4H2O |
1.368 V | RuO− 4 + 8H+ + 5e− |
↔ Ru2+ + 4H2O |
1.387 V | RuO4 + 4H+ + 4e− | ↔ RuO2 + 2H2O |
自然界中存在着7種釕的同位素。此外,目前共發現了34種釕的放射性同位素。在這些放射性同位素當中,較穩定的有106Ru(半衰期373.59天)、103Ru(半衰期39.26天)和97Ru(半衰期2.9天)。[16][17]剩下的釕同位素除了95Ru(半衰期1.643小時)和105Ru(半衰期4.44小時)以外,半衰期都少於五分鐘。[16][17]
比最常見的釕同位素102Ru輕的釕同位素的主要衰變方式是電子捕獲成鍀,而更重的釕同位素則通過β衰變衰變成銠。[16][17]
人們每年大約開採30噸釕[21],而釕的世界儲量估計為 5,000 噸。[19]開採的鉑族金屬 (PGM) 混合物的組成變化很大,這取決於地球化學地層。例如,南非開採的鉑族金屬平均含有 11% 的釕,而前蘇聯開採的鉑族金屬僅含有 2%(1992年)。[22][23]釕、鋨和銥被認為是少數鉑族金屬。[14]
與其他鉑族金屬一樣,釕是作為副產品從鎳、銅以及鉑金屬礦石加工中獲得的。在銅的電解精煉和鎳過程中,銀、金和鉑族金屬等貴金屬沉澱為「陽極泥」,提取原材料。[24][25]根據原材料的組成,通過幾種方法中的任何一種將金屬轉化為離子化溶質。一種代表性方法是與過氧化鈉融合,然後溶解在王水,一種會放出氯與鹽酸的混合物中。[26][27] 鋨、釕、銠和銥不溶於王水並沉澱,將其他金屬留在溶液中。通過用熔融的硫酸氫鈉處理,可從殘餘物中分離出銠。含有釕、鋨和銥的不溶殘留物用氧化鈉處理,其中銥不溶,產生溶解的釕和鋨鹽。在氧化成揮發性氧化物之後,RuO
4 通過和氯化銨反應,產生 (NH4)3RuCl6 的沉澱與 OsO
4 分離,或是用有機溶劑萃取揮發性的四氧化鋨。[28] 氫氣可用來還原六氯合釕(III)酸銨,產生粉末。[10][29]產物用氫氣還原,產生粉末或海綿金屬,可以用粉末冶金技術或氬弧焊進行處理。[10][30]
釕在氧化態 0 到 +8和 −2都有化合物。釕和鋨的化合物有時類似。其中,釕的 +2、+3和 +4 氧化態是最常見的。釕化合物最普遍的前體是三氯化釕,一種紅色固體,化學性質不明確,但在合成其它釕化合物的方面用途廣泛。[29]
釕可以被氧化成二氧化釕(RuO2,氧化態 +4),之後還可以被高碘酸鈉氧化成黃色、揮發性的四氧化釕 RuO4,一種腐蝕性強的氧化劑,其結構和性質類似於四氧化鋨。RuO4 主要用作從礦石和放射性廢物中提純釕的中間體。[31]
釕酸鉀(K2RuO4,氧化態+6)和高釕酸鉀(KRuO4,氧化態+7)都是已知的。[32]不像四氧化鋨,四氧化釕較不穩定,氧化性強到足以在室溫下氧化稀鹽酸和像是乙醇的有機溶劑也容易在鹼性水溶液中被還原成釕酸根(RuO2−
4),它在超過 100 °C下分解成二氧化釕。不像鐵但像鋨,釕沒有低價的 +2、+3 氧化態氧化物。[33]釕會形成二硫屬化物,它們是以黃鐵礦結構結晶的抗磁性半導體。[33] 二硫化釕(RuS2)以礦物硫釕礦的形式在天然中存在。
類似鐵,釕不容易形成氧陰離子,而是更喜歡與氫氧根離子配合,達到高配位數。四氧化釕可被又稀又冷的氫氧化鉀還原成黑色的高釕酸鉀 KRuO4,其中釕為 +7氧化態。高釕酸鉀也可以由氯氣氧化釕酸鉀 K2RuO4而成。高釕酸根離子不穩定,會被水還原形成橙色的釕酸根。釕酸鉀可以通過金屬釕與熔融氫氧化鉀和硝酸鉀反應而成。[34]
一些混合氧化物也是已知的,例如 MIIRuIVO3、Na3RuVO4、Na
2RuV
2O
7和 MII
2LnIII
RuV
O
6。[34]
已知最高價的鹵化釕是六氟化釕,一種熔點 54 °C的深棕色固體。它會劇烈水解,且容易分解成低價氟化釕的混合物,並放出氟氣。五氟化釕是一種以四聚體存在的深綠色固體,也很容易水解,熔點 86.5 °C。黃色的四氟化釕可能也是聚合物結構,可以由碘還原五氟化釕而成。在所有二元釕混合物中,只有氧化物和氟化物能形成高氧化態。[35]
三氯化釕是一種著名的化合物,有黑色的α相和深棕色的β相,而三水合物是紅色的。[36]在已知的三鹵化物中,三氟化釕是深棕色的,超過 650 °C時會分解;三溴化釕是在 400 °C分解的深棕色固體,而三碘化釕是黑色的。[35]在二鹵化物中,二氟化釕未知,二氯化釕是棕色的,二溴化釕是黑色的,而二碘化釕是藍色的。[35]釕唯一已知的鹵氧化物是淺綠色的四氟氧化釕 RuOF4。[36]
釕有很多配合物,例子有五氨配合物 [Ru(NH3)5L]n+ ,通常存在於 Ru(II) 和 Ru(III)。聯吡啶和三聯吡啶的衍生物很多,其中最著名的是冷發光的氯化三(雙吡啶)合釕(II)。
釕可以形成很多有碳-釕鍵的化合物,例如用於烯烴複分解反應的格拉布催化劑。[37] 二茂釕的結構類似二茂鐵,但表現出獨特的氧化還原特性。五羰基釕是無色液體,在沒有 CO 的情況下轉化為深紅色固體十二羰基三釕。三氯化釕和一氧化碳反應,產生很多衍生物如 RuHCl(CO)(PPh3)3 和Ru(CO)2(PPh3)3(Roper配合物)。把三氯化釕的醇溶液和三苯基膦一起加熱,可以得到二氯化三(三苯基膦)釕 (RuCl2(PPh3)3),之後還可以轉化成氫配合物氫氯化三(三苯基膦)釕(II) (RuHCl(PPh3)3)。[29]
雖然,含有所有六種鉑族金屬的天然鉑合金,被前哥倫布時期美洲人長期使用,從16世紀中葉起,被歐洲化學家稱為材料,但直到18世紀中葉,鉑才被確認為一個純元素。天然鉑金屬在19世紀的第一個十年被發現,裏面含有鈀、銠、鋨、銥[38]。俄羅斯河流沖積沙中的鉑,從1828年開始使用於盤子和獎牌以及鑄造盧布硬幣的原物料[39]。在鍊製用於鑄幣的鉑金屬過程中,所得到的殘留物,在俄羅斯帝國是可以取得的,因此鉑的大部分研究是在東歐進行的。
在1807年,從南美的鉑金屬礦中,波蘭化學家約德澤伊•什尼亞代基有可能分離出元素44. (他稱之為vestium,是依據在不久前發現的小行星Vesta命名 )。他於1808年出版了一份他的發現公告[40]。然而,他的工作從未獲得證實,他後來撤回了他的發現聲明[19]。
約恩斯•貝澤柳斯和戈特弗裏德•奧桑在1827年幾乎發現了釕[41] 。他們試驗了以王水溶解烏拉山脈含鉑的原礦石後留下的殘留物。貝澤柳斯沒有發現任何不尋常的金屬元素,但奧桑認為他發現了三種新金屬元素,稱之為pluranium、 ruthenium和polinium。[10]這種差異導致貝爾澤柳斯和奧桑之間關於殘留物成分的長期爭論。[42]由於Osann無法重複他離析釕的實驗,最終放棄了他的主張[42][43]。Osann之所以選擇ruthenium這個名字,是因為分析的樣本來自俄羅斯的烏拉山脈[44] 。 這個名字本身來源於魯塞尼亞,拉丁語Ruthenia,一個歷史區域,包括今天的烏克蘭,白俄羅斯,俄羅斯西部,以及斯洛伐克和波蘭的部分地區。[42]
1844年,波羅的-德意志裔俄羅斯科學家卡爾•恩斯特•克勞斯 (Karl Ernst Claus) 發現,戈特弗裏德•奧桑備製的化合物中也含有少量的釕,克勞斯於同年曾發現的釕。克勞斯在喀山大學工作時,從盧布硬幣製程的鉑金屬殘留物中,分離出釕。就像40年前,在喀山發現釕的更重的同族元素鋨一樣。克勞斯表明,氧化釕含有一種新的金屬元素,並從不溶於王水的粗鉑中獲得6克的釕。替新元素選擇名稱,克勞斯說:"我為新元素命名,以紀念我的祖國,Ruthenium。我有權使用這個名字,因為Osann先生放棄了他的釕,所以這個字還不存於化學[42][45]。在這樣做的過程中,克勞斯開創了一種延續至今的趨勢——以一個國家命名一個元素。[46]
純金屬釕用途很少。釕是鉑和鈀的有效硬化劑,使用它不會降低鉑和鈀的抗腐蝕性。含有較大百分數(30%-70%)的釕的合金,包含有其它貴重金屬或鹼金屬,可用在電氣觸點上和需要抗磨和抗腐蝕的地方,如鋼筆尖和工具樞軸上。二氧化釕導電,在有機介質中以粉末狀與玻璃料相混合,可用作非金屬襯底製成電阻元件。[9]
許多含釕化合物都有催化性。催化劑可方便地兩種:可溶於反應介質的叫均相催化劑,而不溶的則叫多相催化劑。
釕的納米顆粒可以在禾樂石內部形成。這種廣泛存在的礦物天然具有卷狀納米片(納米管)的結構,可以支持釕納米糰簇的合成,用於後續工業催化。[47]
含有三氯化釕的溶液對烯烴複分解反應具有高活性。此類催化劑在商業上用於生產聚降冰片烯。[48]某些釕的卡賓配合物顯示出相當的反應性,可提供於工業過程。[49] 例如,格拉布催化劑已用於製備藥物和先進材料。
釕配合物用於轉移氫化(有時稱為借氫反應)的高活性催化劑。該方法用於酮、醛和亞胺的不對稱氫化。該反應利用手性釕配合物,它們是野依良治引入的。[50] 舉個例子,(cymene)Ru(S,S-TsDPEN)催化氫化二苯基乙二酮,產生 (R,R)-氫化苯偶姻。在該反應中,甲酸鹽和水/醇作為H2的來源:[51][52]
野依良治於2001年授予諾貝爾化學獎,以表彰他在不對稱氫化領域的貢獻。
2012年,Masaaki Kitano及其同事使用有機釕催化劑展示了使用穩定的電子鹽來作為電子供體和可逆氫儲存進行氨合成。[53]
Intel 在自家半導體10nm製程上,在後端製程BEOL中首次使用金屬釕材料[55]。
人們對釕對健康的影響知之甚少[56],因為人們遇到釕化合物的情況相對較少。[57]金屬釕是化學惰性的。[56]一些像是四氧化釕(RuO4)的釕化合物有揮發性且劇毒。[57]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.