Remove ads
原子序數為114的化學元素 来自维基百科,自由的百科全书
在元素週期表中,鈇是位於p區的錒系後元素,屬於第7週期、第14族(碳族),是已知最重的碳族成員。但2007年進行的初步化學實驗指出,鈇具有出乎意料的高揮發性,性質和同族的鉛非常不同。[10]在初步實驗中,鈇甚至似乎表現出與貴氣體相似的性質。[11]更近期的實驗結果顯示,鈇與金的化學反應與鎶相似,表明鈇是一種極易揮發的元素,在標準狀況下甚至可能是氣態的。實驗中鈇也表現出其金屬性,符合鉛的較重同族元素的屬性,且是第14族中反應活性最低的金屬。截至2022年,科學家對鈇的性質到底更像金屬還是貴氣體的問題仍未有定論。
鈇有284Fl~289Fl共6種同位素,其中最長壽的鈇同位素為鈇-289,半衰期約為2.1秒。未經證實的同位素鈇-290可能具有更長的半衰期,為19秒。科學家預計鈇位於理論上的穩定島的中心附近,並且預測更重的未發現同位素,尤其是核子數為雙重幻數的鈇-298,可能具有更長的半衰期。
超重元素[a]的原子核是在兩個不同大小的原子核[b]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[18]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[19]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[19]
不過,只是靠得足夠近不足以使兩個原子核聚變:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[19][20]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[19]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[c]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[19]
兩個原子核聚變產生的原子核處於非常不穩定,[19]被稱為複合原子核的激發態。[22]複合原子核為了達到更穩定的狀態,可能會直接裂變,[23]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[23]原子核只有在10−14秒內不衰變,IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[24][d]
粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[26]在分離室中,新的原子核會從其它核種(原本的粒子束和其它反應產物)中分離,[e]到達半導體探測器後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[26]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[29]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[26]
原子核的穩定性源自於強核力,但強核力的作用距離很短,隨着原子核越來越大,強核力對最外層的核子(質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[30]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[31][32]超重元素理論預測[33]及實際觀測到[34]的主要衰變方式,即α衰變和自發裂變都是這種排斥引起的。[f]幾乎所有會α衰變的核種都有超過210個核子,[36]而主要通過自發裂變衰變的最輕核種有238個核子。[34]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[31][32]
放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[38]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[32]隨着原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素鈾到102號元素鍩下降了23個數量級,[39]從90號元素釷到100號元素鐨下降了30個數量級。[40]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘會消失,因此自發裂變會立即發生。[32][41]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[32][41]隨後的研究發現預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[42]對較輕的超重核種[43]以及那些更接近穩定島的核種[39]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[g]
α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[h]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[26]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[i]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核種。[j]
嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核種確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[k]1998年12月,位於俄羅斯杜布納聯合核研究所(JINR)的科學家使用48Ca離子撞擊244Pu目標體,合成一個鈇原子。該原子以9.67 MeV的能量進行α衰變,半衰期為30秒。該原子其後被確認為289Fl同位素。這項發現在1999年1月公佈。[54]然而,之後的實驗並未能重現所觀測到的衰變鏈。因此這顆原子的真正身份仍待確認,有可能是穩定的同核異構體289mFl。
1999年3月,同一個團隊以242Pu代替244Pu目標體,以合成其他的鈇同位素。這次,他們成功合成兩個鈇原子,原子以10.29 MeV的能量進行α衰變,半衰期為5.5秒。這兩個原子確認為287Fl。[55]其他的實驗同樣未能重現這次實驗的結果,因此真正產生的原子核身份一樣不能被確定,但有可能是穩定的同核異構體287mFl。
杜布納的團隊在1999年6月進行實驗,成功製成鈇。這項結果是受到公認的。他們重複進行244Pu的反應,並產生兩個鈇原子,原子以9.82 MeV能量進行α衰變,半衰期為2.6秒。[56]
研究人員一開始把所產生的原子認定為288Fl,但2002年12月進行的研究工作則將結論更改為289Fl。[57]
2009年5月,IUPAC的聯合工作組發佈鎶的發現報告,其中提到283Cn的發現。[58]由於287Fl和291Lv(見下)的合成數據牽涉到283Cn,因此這也意味着鈇的發現得到證實。
2009年1月,伯克利團隊證實287Fl和286Fl的發現。接着在2009年7月,德國重離子研究所又證實288Fl和289Fl的發現。
2011年6月11日,IUPAC證實鈇的存在。[59]
Flerovium(Fl)是IUPAC在2012年5月30日正式採用的,以紀念蘇聯原子物理學家格奧爾基·弗廖羅夫[60]。此前根據IUPAC元素系統命名法所產生的臨時名稱為Ununquadium(Uuq)[61]。科學家通常稱之為「元素114」(或E114)。
2012年6月2日,中華民國國家教育研究院的化學名詞審譯委員會暫定以鈇作為該元素的中文名稱。[6] 2013年7月,中華人民共和國全國科學技術名詞審定委員會通過以𫓧(讀音同「夫」)為中文定名。[7][62]
日本理化學研究所的一個團隊已表示有計劃研究以下的冷聚變反應:
Flerov核反應實驗室在未來有計劃研究在239Pu和48Ca反應中合成的較輕的鈇同位素。
也有計劃使用不同發射體能量再次用244Pu進行反應,以進一步了解2n通道,從而發現新的同位素290Fl。
目前已知的鈇同位素共有6個,質量數分別為284-289,此外鈇-289還有已知但未確認的亞穩態。鈇的同位素全部都具有極高的放射性,半衰期極短,非常不穩定,且較重的同位素大多比較輕的同位素來的穩定,因為它們更接近穩定島的中心,其中最長壽的同位素為鈇-289,半衰期約1.9秒,也是目前發現最重的鈇同位素。未經證實的同位素鈇-290可能具有更長的半衰期,為19秒。除了鈇-289外,其他半衰期較長的同位素還有鈇-289m(未經證實),半衰期為1.1秒,其餘較輕同位素的半衰期都在1秒以下。
鈇預計屬於7p系,並是元素週期表中14 (IVA)族最重的成員,位於鉛之下。這一族的氧化態為+IV,而較重的元素也表現出較強的+II態,這是因為惰性電子對效應。錫的+II和+IV態強度相近。鉛的+II態比+IV態強。因此鈇應該繼續這一趨勢,有着氧化性的+IV態和穩定的+II態。
鈇的化學特性應與鉛相近,能形成FlO、FlF2、FlCl2、FlBr2和FlI2。如果其+IV態能夠進行化學反應,它將只能形成FlO2和FlF4。它也有可能形成混合氧化物Fl3O4,類似於Pb3O4。
2007年4月至5月,瑞士保羅謝勒研究所與Flerov核反應實驗室的合作計劃研究了鎶的化學特性。第一項反應為242Pu(48Ca,3n)287Fl,第二項反應為244Pu(48Ca,4n)288Fl。他們將所生成的原子在金平面上的吸收屬性與氡的屬性作了比較。第一項實驗探測到3個283Cn原子,但同時也似乎探測到了1個287Fl原子。這項結果是出乎意料的,因為要移動生成了的原子需時大約2秒,鈇原子應該在被吸收前已經衰變了。第二個反應產生了2個288Fl原子和1個289Fl原子。其中兩個原子的吸收特性符合貴氣體的特性。2008年進行的實驗肯定了這一重要的結果,所產生的289Fl原子特性也符合先前的數據,表示鈇和金發生交互作用時類似於貴氣體。[63]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.