Loading AI tools
原子序數為103的化學元素 来自维基百科,自由的百科全书
1961年,阿伯特·吉奧索等人在美國加利福尼亞柏克萊的勞倫斯柏克萊國家實驗室中,首次利用硼轟擊鐦合成出了鐒元素。其名稱來自於迴旋加速器的發明人、美國物理學家歐內斯特·勞倫斯[5]。
化學實驗已証實了鐒的特性符合鎦的較重同族元素,具有+3氧化態。因此,它可以被歸類為第7週期的第一個過渡金屬。然而,鐒的價電子排布為s2p,而非其同族元素鈧、釔、鎦的s2d構型。這意味着鐒在元素週期表中的位置可能比預期的更具波動性。
原子序大於鐒的元素稱為超重元素,皆為壽命短暫、放射性極高的人工合成元素。
超重元素[a]的原子核是在兩個不同大小的原子核[b]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[12]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[13]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[13]
不過,只是靠得足夠近不足以使兩個原子核聚變:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[13][14]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[13]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[c]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[13]
兩個原子核聚變產生的原子核處於非常不穩定,[13]被稱為複合原子核的激發態。[16]複合原子核為了達到更穩定的狀態,可能會直接裂變,[17]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[17]原子核只有在10−14秒內不衰變,IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[18][d]
粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[20]在分離室中,新的原子核會從其它核素(原本的粒子束和其它反應產物)中分離,[e]到達半導體探測器後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[20]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[23]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[20]
原子核的穩定性源自於強核力,但強核力的作用距離很短,隨着原子核越來越大,強核力對最外層的核子(質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[24]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[25][26]超重元素理論預測[27]及實際觀測到[28]的主要衰變方式,即α衰變和自發裂變都是這種排斥引起的。[f]幾乎所有會α衰變的核素都有超過210個核子,[30]而主要通過自發裂變衰變的最輕核素有238個核子。[28]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[25][26]
放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[32]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[26]隨着原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素鈾到102號元素鍩下降了23個數量級,[33]從90號元素釷到100號元素鐨下降了30個數量級。[34]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘會消失,因此自發裂變會立即發生。[26][35]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[26][35]隨後的研究發現預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[36]對較輕的超重核素[37]以及那些更接近穩定島的核素[33]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[g]
α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[h]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[20]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[i]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核素。[j]
嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核素確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[k]1961年在美國加利福尼亞伯克利的勞倫斯放射實驗室中,由阿伯特·吉奧索、西克蘭(T.Sikkeland)、拉希(A.E.Larsh)等人發現。元素符號為Lw,後來改為Lr。
鑒於國際上對104至107號元素名均存在較大分歧,全國科學技術名詞化學名詞審定委員會根據1997年8月27日IUPAC正式對101至109號元素的重新英文定名,於1998年7月8日重新審定、公佈101至109號元素的中文命名,其中101號至103號元素仍使用原有的中文定名「鍆」(音同「門」)、「鍩」(音同「諾」)、「鐒」(音同「勞」)。[48][49]
鐒共有14種已知的同位素,質量數分別為251-262、264和266[50][51][52],以及一個同核異構體鐒-253m。[50]鐒的同位素全部都具有放射性,半衰期都不及12小時,其中壽命最長的是鐒-266,半衰期約10小時[53],但化學實驗中通常使用其他較易製得的短壽命同位素(如鐒-256和鐒-260),因為鐒-266只能作為更重、更難合成的𨧀-270的衰變產物生成,於2014年在鿬-294的衰變鏈中首次探測到。[53]首次對鐒的化學研究中使用的同位素是鐒-256(半衰期27秒),現在則大多使用壽命較長的鐒-260(半衰期2.7分鐘)。[50]除了以上三種同位素外,其他較長壽的鐒同位素包括鐒-262(半衰期3.6小時)、鐒-264(3小時)、鐒-261(44分鐘)和鐒-255(22秒)[50][54][55],剩餘同位素的半衰期都小於20秒,其中壽命最短的是鐒-251,半衰期27毫秒。[52][54][55]
此章節翻譯自英語維基百科,需要相關領域的編者協助校對翻譯。 |
最輕的(251Lr到254Lr)和最重的(264Lr到266Lr)鐒同位素只能由105號元素𨧀的同位素發生α衰變產生,而質量處於中等的同位素(255Lr到262Lr,包括最重要的兩個鐒同位素256Lr和260Lr)都可以通過用輕原子核(從硼到氖)轟擊錒系元素(從鎇到鎄)來製得。256Lr可通過用70MeV的硼-11原子核轟擊鐦-249所製得(產物為鐒-256和四個中子),而260Lr可通過用氧-18原子核轟擊錇-249所製得(產物為鐒-260、一個α粒子和三個中子)。[56]
由於256Lr和260Lr的半衰期都很短,不容易進行完整的化學提純,所以早期實驗中提純256Lr都是通過快速溶劑萃取進行的。其中,螯合劑噻吩甲酰三氟丙酮(TTA)溶解在甲基異丁酮(MIBK)中作為有機相,醋酸緩衝溶液作為水相。之後,帶有不同電荷(+2、+3或+4)的離子會在不同的pH範圍內分別被萃取到有機相中。但這種方法不會分離出三價的錒系元素,所以必須通過256Lr衰變所釋放的8.24MeV的α粒子進行識別。[56]最近的方法是通過α-羥基異丁酸(α-HIB)進行快速選擇性洗脫,以在充分的時間內分離出壽命較長的260Lr,該同位素可以用0.05M鹽酸從捕集器中除去。[56]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.