Loading AI tools
来自维基百科,自由的百科全书
恒星运动学是天文学中观测恒星在空间中运动的运动学测量与研究。
恒星运动学包括量测银河系及其卫星星系中的恒星速度以及更遥远星系内部的运动学,但无须了解它们如何获得运动原因的学门。恒星运动学量测银河系的薄盘、厚盘、核球和银晕等不同的次级结构中的恒星运动,提供了有关我们银河系形成和演化历史的重要资讯。运动学的量测还可以是别出一些奇异现象,例如从银河系逃逸的超高速星。这些现象被解释为联星与银河系中心的超大质量黑洞引力遭遇的结果。
恒星运动学与恒星动力学相关,但与恒星动力学不同。后者涉及恒星在引力影响下运动的理论研究或建模。星系或星团等系统的恒星动力学模型通常与恒星运动学的数据进行比较或测试,以研究它们的演化历史和质量分布,它们并通过引力对恒星轨道的影响来探测暗物质或超大质量黑洞的存在。
恒星的运动速度向着太阳接近或远离的分量称为径向速度,可以从频谱的多普勒效应测量出来。横向,或是自行则必须对更遥远的背景天体进行一系列的位置观测才能测定。一旦一颗恒星的距离经由其它的天体测量方法得到,例如视差,就可以计算出空间的速度[1]。这是恒星相对于太阳或本地静止标准(LSR,local standard of rest)的真实运动。后者通常是定位于太阳环绕银河系中心的圆形轨道上现在的太阳位置,这也意味着与邻近的恒星只有最低的速度散布[2] 太阳相对于本地静止标准的运动被称为本动太阳运动(peculiar solar motion)。
在银河系的银道座标系的空间速度分量通常以U、V和W标示,单位为km/s,U向着银河中心的方向为正直,V朝向银河自转的方向为正值,W指向银河北极的方向为正值[3]。太阳相对于本地静止标准的本动太阳运动是U = 10.00 ± 0.36km/s,V = 5.23 ± 0.62km/s和W = 7.17 ± 0.38km/s[4]。
银河系内的恒星依据它们的金属量或原子序大于氦原子的比例被分成两个星族。多数邻近的恒星,都被发现是星族一,高金属量的恒星通常速度较低、年龄较老,属于星族二的恒星。后者有着倾斜于银河平面的椭圆轨道绕着银河中心运转[5]。此外,比较邻近恒星的运动学,也导出了星协的标识,这些都可能是起源于同一个巨分子云的恒星,分享了共同运动汇聚点的恒星集团[6]。
在银河系内,有三个主要的恒星运动学成分:盘面、晕和核球或棒。这些集团与恒星在星系中的星族、在运动和化学成分上的关系,和指出不同的形成机制息息相关。晕可能可以进一步的区分为内晕和外晕,内晕有着顺行的净转动,外晕的净运动是逆行的[7]。
根据定义,速逃星是移动速度,相对于在太阳附近的恒星的平均速度,在任何时间都超过65km/s至100km/s的恒星。有时也被定义为相对于周围的星际介质的速度是超音速。高速星的三种类型分别是:速逃星、晕星、和超高速星。
速逃星是相对于环绕在周围的星际物质,以异常高的速度在空间中运动的恒星。速逃星的自行通常能确切的指出他来自哪一个星协,在他被掷出之前,它们是同一个集团的成员。
有两种可能的机制能产生速逃星:
这两种机制在理论上都有可能,天文物理学家比较偏爱超新星的假说,因为实际上的可能性较高。
一组速逃星的例子是御夫座AE、白羊座53和天鸽座μ,它们都以超过100km/s的速度奔离(相较之下,太阳在银河系中相对于邻近空间的速度只有20km/s)。回溯它们的运动路径,大约在2百万年前它们都很靠近猎户座大星云。相信巴纳德环是这次超新星的残骸和推出其它恒星的发源地。
银晕星是很老的恒星,不会与太阳或邻近太阳也在圆轨道上绕着银河中心的其它恒星共享运动状态。换言之,它们在椭圆的轨道上运动,因此经常位于银河盘面之外。虽然它们位于银河系中的轨道速度不会比太阳快,但是路径的不同导致它们在太阳系附近有着相对来说较高的速度。
典型的例子是晕星会以陡峭的角度穿越银河盘面。在最靠近的45颗恒星中有一颗称为卡普坦的恒星,是晕星在太阳附近的一个例子。它被观测到的径向速度是 -245km/s,在空间中的速度分量是U = 19km/s,V = -288km/s,和W = -52km/s。
超高速星(HVSs),少数人称之为流放星[8],是速度超过该星系引力所能约束的逃逸速度的恒星。星系中恒星的速度一般都在100km/s的数量级上,而超高速星(尤其是位于被认为是"产生"超高速星的星系中心附近)的速度在1000km/s的数量级,
J. Hills在1988年就已经预测超高速星的存在[9],但到2005年,哈佛-史密松天体物理中心的Warren Brown和伙伴们才发现第一颗超高速星[10]。现在,已经发现了十颗,其中还有一颗(HE 0437-5439)原本认为是来自大麦哲伦星系,而不是银河系[11]。但对它的自行运动进行研究后测定该恒星被驱逐弹出的起始点位于银河系内核[12]。目前发现的超高速星距离都在50,000秒差距之外,并且未受到来自星系的束缚。
估计在我们的银河系应该有约1,000颗的超高速星,而银河系至少有1,000亿颗的恒星,所以这是非常低的比例。
超高速星产生的主要方法通常被总结如下:相信它们是起源于与银河系中心的超大质量黑洞密切接触的联星。两个伙伴中的一颗被黑洞捕获,而另一颗就转而获得高速度。同时,值得注意的是捕获并不意味着被吞噬掉。已知的超高速星都是质量至少数倍于太阳的主序星。
在阿根廷的科尔多瓦天文台有一个小组相信我们看见的超高速星是我们的银河系和一个环绕的矮星系碰撞与合并所造成的。这个矮星系曾经环绕我们的银河系,并穿越银河系的中心。当这个矮星系接近银河系中心的黑洞时,经历了激烈的引力拖曳。这次的拖曳激发了其中的一些恒星,使它们从矮星系的引力中解除了束缚,成为被抛入太空中的恒星[13]。
有些中子星被推断有着相似的速度在运行,但是它们与超高速星形成的抛射机制和视觉效果都没有关联。中子星是超新星爆炸的残骸,它们极端的高速度可能来自于超新星暴炸时的非对称性。中子星 RX J0822-4300[14]在2007年被钱卓X射线天文台测量到的速度高达1,300Km/s(光速的0.54%),就被认为是这样造成的。
在空间中有着相似的运动和年龄的一组恒星称为运动群[15]大部分的恒星诞生于被称为恒星苗圃的分子云内。在这样的云气中形成的恒星受到重力的约束构成疏散星团,包含数打至数千颗年龄和组成都相似的恒星。这些星团随着时间逐渐溃散,成群的恒星从星团中逃逸,彼此不再互相的约束对方,便成为星协。随着这些恒星年龄的增长和散开,这些星协不再是显而易见时,它们就成为运动群。
如果恒星是运动群的成员,天文学家是可以测量出来的,因为它们有着相同的年龄、金属量和运动(径向速度和自行)。虽然后来它们被潮汐力分散开来,但是运动群的成员在同一个星云内相近的地区和相同的时间形成,它们会共享相同的特性[16]。
星协是有着共同的起源,虽然已经不再被彼此间的引力束缚,但仍在空间中一起运动,结构非常松散的恒星集团。星协的辨识通常以共同的运动向量和年龄为主,但是通过化学成分的鉴定也是常用来辨识星协成员的因素。
星协最早是在1947年被亚美尼亚的天文学家维克托·安巴楚勉发现的[17]。传统的命名法是使用它们所在位置相关的星座缩写或星座;星协的类型,有时也会加上数字的识别码。
Viktor Ambartsumian最初的目录只根据星协中恒星的属性将星协分成两群:OB和T[17],第三种R是稍后在Sidney van den Bergh建议下才加入的,是被反射星云照亮的星协[18]。OB、T、和R星协形成一系列年轻的恒星族群,但目前还不清楚这是不是一个演化的序列,或者只是代表一些形成上的因素[19]。有些集团同时显示出OB和T关联的属性,所以在分类上不是很明确的区分。
年轻的星协,包含10-100颗光谱分类为O和B的大质量恒星,会被称为OB星协。这些被认为(相信)是在巨分子云内相同的小区域内形成的。一旦周围的气体和尘埃被吹走,残留下的恒星因为不受约束渐开始相互的疏远[20]。相信在银河系内所有的恒星,大多数是在OB星协中形成的[20]。O型恒星是短命的,大约数百万年后就会成为超新星。结果是,OB星协通常也只有数百万年或更短的寿命。在星协内的O-B恒星在一千万年内就会耗尽它们的核燃料(相较于现在的太阳大约已经50亿岁了)。
依巴谷卫星提供了位置在离太阳650秒差距距离内12个OB星协的测量 [21]。距离最近的OB星协是天蝎-半人马星协,与太阳的距离只有400光年[22]。
在大麦哲伦星系和仙女座大星系也都发现了OB星协。这些星协非常的松散,直径跨越了1,500光年[23]。
年轻的恒星集团可以包含大量婴儿期的金牛T星,这些恒星还在进入主序带的过程中。这些疏松的群体可以包含上千颗的金牛T星,被称为T星协。最靠近的T星协例子是金牛-御夫T星协,语太阳的距离只有140秒差距 [24]。其他T星协的例子还包括南冕座RT星协、豺狼座T星协、蝘蜓座T星协和船帆座T星协。T星协常常被发现在他门形成的分子云附近,有些,但不是都这样,还会有O-B型的恒星。总结运动群成员的特点:它们有相同的年龄和起源、相同的化学组成,和在运动的向量和速度上有相同的振幅和方 向。
恒星照亮反射星云的星协称为R星协,这是 Sidney van den Bergh在发现这些星云中的恒星分布不均匀之后建议的[18]。这些年轻的恒星群包含的主序星没有足够的质量,吹散形成它们的恒星际云[19],这使得天文学家检测到的是它们周围暗云的属性。因为R星协比OB星协更多,可以用它们来追踪星系的螺旋臂结构[25]。R星协的一个例子是麒麟座R2,与太阳的距离是830 ± 50 秒差距[19]
如果在星系中飘流的一群恒星集团残余在某种程度上仍然有共通性,这就会被称为移动星群。移动星群可能很老,像是HR 1614,已经有20亿年了;也可能很年轻,像是剑鱼座AB移动星群,只有1.2亿年。
在1960年代,奥林·艾根对移动星群进行了深入的研究[26]。洛佩斯-圣地亚哥等人编制了一份邻近的年轻移动星群的清单[27],最靠近的是大熊座移动星群。它包括北斗七星这个星群中除了天枢(大熊座α)和瑶光(大熊座η)之外所有的恒星。这个距离近到太阳位于它的外缘,但不属于这个群体。因此,尽管成员集中在赤纬60°N附近,但一些外缘的成员在天球上的位置远到在70°S的南三角座。
年轻的移动星群清单不断的在修正。班杨&Σ工具[28]目前列出了29个邻近的年轻移动星群[30][29]。最近添加的移动星群是在盖亚任务[31]发现的飞鱼-船底星协(VCA),和确认的阿格斯星协(ARG)[32]。有时,移动星群可以进一步细分为更小的不同群组。大南方年轻星协(The Great Austral Young Association,GAYA)复合体被分为船底、天鸽、和杜鹃-时钟星协三个移动星群。这三个组合相互之间并不是很明显,但具有相似的运动学性质[33]。
年轻的移动星群有众所周知的年龄,可以帮助对难以估计年龄的天体进行定性,例如第一颗M型棕矮星泰德-1(Teide-1)的年龄[34]。附近的年轻移动星群成员也是原行星盘直接成像的候选对象,例如长蛇座TW,或直接成像的系外行星,例如绘架座βb和双鱼座GUb。
一些动力群包括[15]:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.