调和级数(英语:Harmonic series)是正整数的倒数之和,是发散的无穷级数,表达式为:
事实速览 无穷级数, 审敛法 ...
无穷级数
|
|
无穷级数
|
|
|
关闭
这级数名字源于泛音及泛音列[注 1]:振动的弦的泛音的波长依次是基本波长的、、……等。调和序列中,第一项之后的每一项都是相邻两项的调和平均数;而“调和平均数”一词同样也源自音乐。
早在14世纪,尼克尔·奥里斯姆已经证明调和级数发散,但知道的人不多。17世纪时,皮耶特罗·曼戈里、约翰·伯努利和雅各布·伯努利完成了全部证明工作。
调和序列历来很受建筑师重视;在巴洛克时期尤其明显。当时建筑师在建造教堂和宫殿时,运用调和序列为楼面布置和建筑物高度建立比例,并使室内外的建筑细节间呈现和谐的联系。[1]
对刚接触这级数的人而言,调和级数违反直觉——尽管随不断增大,无限接近0,但它却是发散级数。调和级数也因此成为一些佯谬的原型。“橡皮筋上的蠕虫”就是其中一例。[2]假设蠕虫沿着1米长的橡皮筋爬行,而橡皮筋每分钟匀速伸展1米。如果相对于其所在的橡皮筋,蠕虫的爬行速度是每分钟1厘米,那么它最终会到达橡皮筋的另一头吗?与直觉相反,答案是肯定的:分钟之后,蠕虫爬行过的距离与橡皮筋总长度的比值为:
- 。
调和级数发散(证明见本条目“发散”一节),即趋于无穷大时级数也趋于无穷大,这比值也必定在某时刻超过1;也就是说,蠕虫最终一定会到达橡皮筋另一头。然而,在这时刻的n的值极其之大,约为,超过1040(1后面有40个零)。这也说明了,尽管调和级数确确实实是发散,但它发散的速度非常慢。
另一例:假设有一堆完全相同的骨牌,可以肯定的是,它们可以叠在一起,并使得每块骨牌都突出其下方骨牌外一定长度,最终使得最上层的骨牌完全在最底层骨牌以外甚至更远。违反直觉的是,只要骨牌够多,就可以使最上层的骨牌与最底层骨牌水平距离无穷远。[2][3]较简单的证明如下:
设每一块骨牌的长度为。再设一叠块平衡的骨牌的质心与最底层骨牌最右端的距离为;在只有1块骨牌时,质心就在骨牌的几何中心(假设骨牌密度均匀),即。对于一叠刚好平衡的骨牌(即对于任意一层骨牌,在其之上的骨牌的质心恰好落在其边缘),新骨牌不置于其上方(否则使得质心往右偏移而倒塌),而是垫在整叠骨牌之下,并使得原有骨牌的质心刚好落在新骨牌的最左端(则原来的骨牌不会倒塌);设从上往下第n层骨牌突出其下方骨牌的长度为,则有:。根据质心的坐标系计算公式,可得到新的骨牌叠的质心为:
则,即。
也就是说,理想的摆法是:最顶层骨牌与第二层之间水平距离是骨牌长度的,第二、三层间水平距离是骨牌长度的,第三、四层之间水平距离是骨牌长度的……依此类推。最终,最顶层和最底层骨牌的水平距离是:
调和级数发散,当骨牌数目趋于无穷大时,水平距离也趋于无穷大。
将调和级数的和与一个瑕积分比较可证此级数发散。考虑右图中长方形的排列:长方形宽1单位、高单位(换句话说,每个长方形的面积都是),所有长方形的总面积就是调和级数的和:
矩形面积和
而曲线以下、从1到正无穷部分的面积由以下瑕积分给出:
曲线下面积
。这部分面积真包含于(换言之,小于)长方形总面积,长方形的总面积也必定趋于无穷。更准确说,这证明了
这方法的拓展即积分判别法。
假设调和级数收敛 , 则
但与矛盾,故假设不真,即调和级数发散。
调和级数的第项部分和为:
- ,
也叫作第n个调和数。
第n个调和数与的自然对数的差值(即)收敛于欧拉-马歇罗尼常数。
两个不同的调和数之间的差值永远不是整数。
除了以外,没有任何调和数是整数。[5]
如下级数:
称作交错调和级数。这级数可经交错级数判别法证明收敛。特别地,这级数的和等于2的自然对数:
- 。
这公式是墨卡托级数(自然对数的泰勒级数形式)的特例。
从反正切函数的泰勒展开式可导出相关级数:
- 。
这级数也称作π的莱布尼茨公式。
广义调和级数是指有如下形式的级数:
- 。
其中且为实数。
由比较审敛法可证所有广义调和级数均发散。[6]
对凸实值函数,若满足以下条件:
则级数收敛。
贫化调和级数是将调和级数中、分母含有数字9的项去除后所剩的级数。这级数是收敛的,其和小于80。[10]实际上,将包含任意数字串的项从调和级数中去除后,所剩级数都收敛。
调和级数是柯西发散的,而且很多常用的发散级数求和方法[注 2]对它也不适用。但是,调和级数的拉马努金求和存在,且为欧拉-马斯刻若尼常数。