Loading AI tools
研究形狀、大小、圖形的相對位置等的數學分支 来自维基百科,自由的百科全书
几何学(英语:Geometry,古希腊语:γεωμετρία)简称几何。几何学是数学的一个基础分支,主要研究形状、大小、图形的相对位置等空间区域关系以及空间形式的度量。
许多文化中都有几何学的发展,包括许多有关长度、面积及体积的知识,在公元前六世纪泰勒斯的时代,西方世界开始将几何学视为数学的一部分。公元前三世纪,几何学中加入欧几里德的公理,产生的欧几里得几何是往后几个世纪的几何学标准[1]。阿基米德发展了计算面积及体积的方法,许多都用到积分的概念。天文学中有关恒星和行星在天球上的相对位置,以及其相对运动的关系,都是后续一千五百年中探讨的主题。几何和天文都列在西方博雅教育中的四术中,是中古世纪西方大学教授的内容之一。
勒内·笛卡儿发明的坐标系以及当时代数的发展让几何学进入新的阶段,像平面曲线等几何图形可以由函数或是方程等解析的方式表示。这对于十七世纪微积分的引入有重要的影响。透视投影的理论让人们知道,几何学不只是物体的度量属性而已,透视投影后来衍生出射影几何。欧拉及高斯开始有关几何物件本体性质的研究,使几何的主题继续扩充,最后产生了拓扑学及微分几何。
在欧几里德的时代,实际空间和几何空间之间没有明显的区别,但自从十九世纪发现非欧几何后,空间的概念有了大幅的调整,也开始出现哪一种几何空间最符合实际空间的问题。在二十世纪形式数学兴起以后,空间(包括点、线、面)已没有其直观的概念在内。今日需要区分实体空间、几何空间(点、线、面仍没有其直观的概念在内)以及抽象空间。当代的几何学考虑流形,空间的概念比欧几里德中的更加抽象,两者只在极小尺寸下才彼此近似。这些空间可以加入额外的结构,因此可以考虑其长度。近代的几何学和物理关系密切,就像伪黎曼流形和广义相对论的关系一样。物理理论中最年轻的弦理论也和几何学有密切关系。
几何学可见的特性让它比代数、数论等数学领域更容易让人接触,不过一些几何语言已经和原来传统的、欧几里得几何下的定义越差越远,例如碎形几何及解析几何等[2]。
现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合。
几何学应用于许多领域,包括艺术,建筑,物理和其他数学领域。
几何一词源于《几何原本》的翻译。《几何原本》是世界数学史上影响最为久远,最大的一部数学教科书。《几何原本》传入中国,首先应归功于明末科学家徐光启。徐光启和利玛窦《几何原本》中译本的一个伟大贡献是确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。“几何”的原文是“geometria”(英文geometry),徐光启和利玛窦在翻译时,取“geo”的音为“几何”(明朝音:gi-ho),而“几何”二字中文原意又有“衡量大小”的意思。用“几何”译“geometria”(英文geometry),音义兼顾,确是神来之笔。几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。这些译名一直流传到今天,且东渡到汉字文化圈的日本、朝鲜等国(越南语则使用独自翻译的越制汉语“形學(hình học)”一词),影响深远。
几何学开始的最早记录可以追踪到公元前2世纪的古代埃及和美索不达米亚。[3][4]早期的几何学是有关长度、角度、面积和体积的经验性定律的收集,这些都是因为实际需要(比如勘探、建筑、天文和一些手工业)而发展的。最早的已知有关几何学的文本是埃及的莱因德纸草书(公元前2000-1800年)和莫斯科数学纸草书(约公元前1890年),以及古巴比伦的泥石板(比如“普林顿 322”(公元前1900年))。比如,莫斯科纸草书上给出了如何计算棱台体积的公式。[5]埃及南部的古代努比亚人曾经建立了一套几何学系统,包括有太阳钟的早期版本。[6][7]
几何学有悠久的历史。最古老的欧氏几何基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《几何原本》是公理化系统的第一个范例,对西方数学思想的发展影响深远。
一千年后,笛卡儿在《方法论》的附录《几何》中,将坐标引入几何,带来革命性进步。从此几何问题能以解析式的形式来表达。
欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何[8]。
几何学的现代化则归功于克莱因、希尔伯特等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。
几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。
几何这个词最早来自于希腊语“γεωμετρία”,由“γέα”(土地)和“μετρεĭν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。用“几何”的音来表达,关于数与量的,用“几何”的义来表达。换句话说,徐光启心目中的“几何”,可能就是今天我们所谓的“数学”。所以他为译本所取的名字,以今日用语再翻译一次,就是:《基础数学》。所以如果了解《几何原本》为《基础数学》,它当然会包含像辗转相除法这样的课题。希腊语GEO+METRY按照字源意思是“地理测算”的意思,所以依照字面意思对照现代分类相当于测算学,分平面测算学与立体测算学。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——“形学”,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一词的使用出现。
几何学起源于一些实务上有关量测、面积及体积的科学。在许多方面都已找到相当的公式,例如毕氏定理、圆的周长及面积、三角形的面积、圆柱、球及四角锥的体积等。泰勒斯发展了以几何物件的相似为基础,计算一些无法直接量测的高度或距离的方法。天文学的发展也带来三角学及球面三角学的诞生,也有一些对应的计算技巧。
欧几里德在所著的《几何原本》中作了更抽象化的处理。欧几里德引入了一些公理来说明点、线和面一些基本的或是可自证的性质。接着再用数学的思考再去推导其他的性质。几何原本中的推导以其严谨性著称,称为公理化几何。在十九世纪初时,尼古拉·罗巴切夫斯基(1792–1856)、鲍耶·亚诺什(1802–1860)及卡尔·弗里德里希·高斯(1777–1855)发展了非欧几何,其他数学家开始再度对此一领域有兴趣。二十世纪的大卫·希尔伯特试图用公理化的理解为几何学提供现代的基础。
古典的几何学家花了许多心力要绘制定理中绘述的几何物件。传统上,可以使用的工具是圆规及没有刻度的直尺,需要在有限次数的绘制内完成图形。有些图形很难(甚至无法)单纯用尺规作图求得,需要配合抛物线、其他曲线或是机械工具才能完成。
古希腊的毕达格拉斯就已考虑过数字在几何中的角色。不过因为不可通约长度的出现,不符合他的哲学观点,因此他们放弃抽象的几何量,改用实际上的几何量,例如图案的长及面积。后来勒内·笛卡儿利用坐标系再让数字和几何连结,笛卡儿也发现根据一图示的代数表现可以知道此形状,后来笛卡儿用的坐标系就称为笛卡儿坐标系。
欧几里得所提出的抽象概念,进而使得《几何原本》列入了最有影响力的书籍之一,欧几里得提出五大公理和公设,揭示了点线面的自可证的基本性质,他一直试图通过其他数学理论来严谨性推导其他性质,而这也是欧几里得陈述的最特色的地方,并使得几何更加公理化和系统化。19世纪初,尼古拉·罗巴切夫斯基 (1792–1856), 鲍耶·亚诺什 (1802–1860), 卡尔·弗里德里希·高斯 (1777–1855)对非欧几里得几何的探索使得几何学领域又得以重新发展,而在20世纪初,大卫希尔伯特把公理性证明的引入成就了现代几何学的出现。
点作为欧几里得空间的基本构成,通过很多方式定义,包括欧几里得所定义的“点不占据空间[9]”以及在代数与嵌套空间的引用[10]。在几何学的众多领域,包括分析几何,微分几何,以及拓扑学,所有的单元都是点构造出来的,然而,有些几何学的研究缺乏对点这个元素的参照。[11]
欧几里得把线形容成‘在点之间均匀铺着’的‘没有宽度的长度’[9],在现代数学体系已给知的多元几何中,线的定义也相当的接近几何学中的定义,例如在解析几何中,点坐标的集合所构成的一个已知一次方程称为线,[12]而在像重合几何这种更抽象的设定中,线可以是个单独的对象,而区别于点的集合所构成的情况[13]。在微分几何中,对曲率不为0的流形,测地线往往更好能表达线的概念。 [14]
二维,光滑且无限延展的平层构成了平面,[9]几何学到处都会用到面,例如,研究拓扑学的曲面对象可以看作一个没有距离和角度做参照的平层[15];对在仿射空间的面,没有参照距离却有共线性和曲率的研究[16]。或是在高斯平面(复平面)需要用到复分析[17]等。
欧几里得所描述的平面角,是指在一个平面内两条相交却不平行的直线中间的倾角[9] 在现代几何学名词中,共有一个顶点的两条射线形成角的两边,而所形成的角度称为角。 [18]
在欧几里得几何中,角一般用来研究多边形或三角形,也有对其本身的研究[9]对三角形或单位圆中对角的研究构成了三角学的基础[19]。
欧几里德几何和计算几何、计算机图形、凸几何、关联几何、有限几何学、离散几何学,以及组合数学中的部分领域都有密切关系。欧几里德几何和欧几里德群在晶体学上的进展和哈罗德·斯科特·麦克唐纳·考克斯特的研究已受到注意,可以在考克斯特群及多胞形的理论中看到。几何群论是将几何学延伸到离散群中,有关其几何结构及代数技术的研究。
微分几何因着爱因斯坦的广义相对论假设有曲率的宇宙,因此逐渐受到数学物理的重视。现代的微分几何是本质性的,将空间视为是微分流形,其几何结构则由黎曼流形处理,包括如何量测二点之间的距离等。不再只是欧几里德几何中先验的一部分。
拓扑学是转换几何中的一部分,专注在同胚的转换,拓扑学在二十世纪有显著的进展,简单来说,拓扑学可以说是“橡皮下的几何学”。当代的几何拓扑学、微分拓扑,以及像莫尔斯理论等子领域,被大部分数学家视为是几何学的一部分。代数拓扑和点集拓扑学则被视为是另一个新的领域。
解析几何是欧几里德几何的现代版本,从1950年代末到1970年代中有大幅的进展,主要是因为让-皮埃尔·塞尔及亚历山大·格罗森迪克的贡献,这也产生了概形以及代数拓扑学一些方法的重视,包括许多的上同调理论。千禧年大奖难题中的霍奇猜想就是解析几何学的问题。
低维度代数簇、代数曲线及代数曲面的研究以及三维代数簇(algebraic threefolds)的研究都有很多进展。Gröbner基理论及实代数几何应用在现在解析几何的一些子领域中。算术几何(Arithmetic geometry)是结合了解析几何及数论的一个新的领域。另外一个研究方向是模空间及复几何。代数几何的方法广泛的用在弦理论及膜宇宙理论中。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.