Loading AI tools
nükleer füzyon ile karanlık uzayda etrafına ısı ve ışık saçan kozmik cisim, plazma küresi Vikipedi'den, özgür ansiklopediden
Yıldız, ağırlıklı olarak hidrojen ve helyumdan oluşan,[1] karanlık uzayda ışık saçan, gökyüzünde bir nokta olarak görünen plazma küresidir. Bir araya toplanan yıldızların oluşturduğu galaksiler, gözlemlenebilir evrenin hâkimidir. Dünya'dan çıplak gözle görülebilen yaklaşık 6 bin dolayında yıldız vardır. Dünya'ya en yakın yıldız, aynı zamanda Dünya üzerindeki yaşamın gerçekleşmesi için gerekli olan ısı ve ışığın kaynağı da olan Güneş'tir.[1]
Güneş ışığı dâhil olmak üzere Dünya üzerindeki enerjinin çoğunun kaynağı Güneş'tir. Diğer yıldızlar, yeryüzünden bakıldığında Güneş’in ışığı altında kalmadıkları zaman, yani geceleri gökyüzünde görünürler. Yıldızların parlamasının nedeni ise, çekirdeklerinde meydana gelen çekirdek kaynaşması (füzyon) tepkimelerinde açığa çıkan nükleer enerjinin yıldızın içinden geçtikten sonra dış uzaya radyasyon (ışınım) ile yayılmasıdır.
Astronomlar bir yıldızın tayfını, parlaklığını ve uzaydaki hareketini gözlemleyerek o yıldızın kütlesi, yaşı, kimyasal bileşimi ve bunun gibi birçok özelliğini belirleyebilir. Bir yıldızın toplam kütlesi, yıldızın gelişiminin ve sonunun ana belirleyicisidir. Kütlelerine bakılarak bir yıldızın yaşam süresi tahmin edilebilir: Büyük yıldızlar az, Güneş gibi küçük yıldızlar ise çok yaşar.[2]
Bir yıldızın gelişim süreci, içinde bulunduğu aşamaya göre çapı, dönüşü, hareketi ve sıcaklığı ile belirlenir. Sıcaklık ve parlaklık durumuna göre işaretlendikleri Hertzsprung-Russell diyagramı (H-R diyagramı), yıldızların güncel yaşını ve gelişim sürecindeki aşamasını belirlemek için kullanılır.
Yıldız gelişiminin ilk halkası; hidrojen, bir miktar helyum ve çok az miktarda daha ağır elementlerden oluşan ve içe doğru çökmeye başlayan bir madde bulutudur. Yıldız çekirdeği yeteri kadar yoğunlaştıktan sonra içinde bulunan hidrojenin bir kısmı sürekli olarak çekirdek kaynaşması tepkimesiyle helyuma çevrilir. Yıldızın geri kalan kısmı, açığa çıkan enerjiyi, ışınım ve konveksiyon birleşimiyle çekirdekten uzağa taşır. Bu süreçler yıldızın kendi içine doğru çökmesini engeller ve enerji, yıldız yüzeyinde bir yıldız rüzgârı yaratarak dış uzaya doğru ışınım yoluyla yayılır.[3]
Çekirdekteki hidrojen yakıtı bittikten sonra, en azından Güneş'in kütlesinin beşte ikisi kadar bir kütleye sahip olan yıldız[4] genişleyerek, daha ağır olan elementler çekirdekte ya da çekirdeğin etrafında kabuk hâlinde kaynaşarak kırmızı bir dev hâline gelir. Daha sonra maddenin bir kısmı yıldızlararası ortama salınarak, ağır elementlerin daha yoğun olacağı yeni bir yıldız nesli yaratacak şekle dönüşür.[5] Küçük yıldızlar, yaşamlarının sonuna geldiğinde sakin bir patlamayla ölürler. Ancak Güneş'ten milyonlarca kat daha büyük olan yıldızlar, ömürlerinin sonunda büyük ve korkunç bir patlamayla ölürler ve enerjilerini uzaya salarlar. Bu patlamaya süpernova patlaması denir. Bir süpernova patlaması sırasındaki yıldızın parlaklığı, bulunduğu galaksideki tüm yıldızların toplam parlaklığına yaklaşır. Güneş'ten en az 20 kat daha ağır olan yıldızlar, süpernova patlamasından sonra bir kara deliğe dönüşürler.[2]
İki ya da daha fazla yıldızdan oluşan sistemlerde birbirine kütleçekim gücüyle bağlanmış olan ve genellikle birbirinin çevresinde düzenli yörüngelerde dönen yıldızlar bulunur. Birbirine çok yakın bir yörünge izleyen yıldızların kütleçekim gücü ile etkileşimlerinin evrimsel gelişimlerinde önemli etkisi vardır.[6]
Bir görüşe göre Türkçede yer alan yıldız, yıldırım, ışık, ışın, alev, yalım, yalın, alaz/yalaz kelimeleri *ya- fiil kökünden türemiştir. Bu kelimeler "ışık saçmak, parlamak, aydınlatmak" anlamına gelmektedir.[7] Kimi eski metinlerde farklı bir anlamda kullanıldığı görülür örneğin Maitreyasamitināṭaka’da yıltız ve Kutadgu Bilig'de yıldız biçiminde, “kök, esas” anlamında kullanılmıştır. Dîvânu Lugâti't-Türk'te ise yine yıldız biçiminde ancak "ağaç kökü" anlamında kullanılmıştır. Birçok Türki dilde de benzer kelimelere rastlanır: Gagavuzca ve Türkmence Yıldıs, Kazakça Juldız, Özbekçe ve Uygurca Yulduz, Yakutça Sulus.[8]
Tarih boyunca yıldızlar, medeniyetler için büyük bir anlam ifade etmiştir. Dini uygulamaların bir parçası olabildikleri gibi göksel seyir ve yön bulma amacıyla da kullanılmışlardır. Birçok eski astronom yıldızların Dünya'nın etrafını saran gök küreye kalıcı olarak sabitlendiğine ve değişmez olduklarına inanıyordu. Genel kanıya göre, astronomlar yıldızları takımyıldızlara ayırdılar ve onları gezegenlerin hareketlerini ve Güneş'in bu takımyıldızlar üzerindeki hareketini anlamak için kullandılar.[9] Güneş'in arka plan yıldızlarına (ve ufka) karşı hareketi, tarımsal uygulamaları düzenlemek için kullanılabilecek takvimler oluşturmak için kullanıldı.[11] Dünya'nın hemen hemen her yerinde kullanılan Miladi takvim, en yakın yıldız olan Güneş’e göre dönme ekseninin açısını temel alan bir güneş takvimidir.
Kesin olarak tarihlendirilen en eski yıldız haritası, M.Ö 1534'te Antik Mısır'lı astronomlar tarafından oluşturulmuştur.[12] Bilinen en eski yıldız katalogları ise, Kassite Dönemi'nde (M.Ö. 1531-1155) Mezopotamya'nın Babilli astronomları tarafından derlenmiştir.[13]
Yunan astronomisindeki ilk yıldız kataloğu M.Ö 300'lerde Aristillus tarafından Timocharis'in yardımlarıyla oluşturulmuştur.[14] Hipparkos'un (M.Ö. 2. yüzyıl) yıldız kataloğu ise 1020 yıldız içeriyordu ve Batlamyus kendi kataloğunu oluştururken buradan fazlasıyla yararlanmıştır.[15] Hipparkos tarihte kaydedilen ilk nova (yeni yıldız)'yı keşfetmesiyle tanınır.[16] Bugün kullanılan takımyıldız ve yıldız isimlerinin büyük bir kısmı Yunan astronomlar tarafından verilmiştir.
Göklerin göründüğü kadarıyla değişmediği düşünülse de, Çinli astronomlar yeni yıldızların keşfedilebileceğinin farkındaydılar. M.S 185'te, şimdilerde SN 185 olarak bilinen bir süpernova hakkında ilk gözlemi yapan ve hakkında yazanlar onlardı.[17] Bilinen en parlak süpernova ise 1006'da Mısırlı astronom Ali bin Ridvan ve birkaç Çinli astronom tarafından gözlemlenen SN 1006 adlı süpernova idi.[18] Yengeç Bulutsusunu doğuran SN 1054 adlı süpernova da Çinli ve Müslüman astronomlar tarafından gözlemlenebilmiştir.[19][20][21]
Ortaçağ'ın Müslüman astronomları, günümüzde halen kullanılan birçok yıldıza Arapça isimler verdiler ve yıldızların pozisyonlarını hesaplayabilecek çok sayıda astronomik alet icat ettiler. Zic diye adlandırılan yıldız katalogları oluşturmak amacıyla ilk büyük gözlemevi araştırma enstitülerini kurdular.[22] Bunların arasında bir dizi yıldızı, yıldız kümesini (Omicron Velorum ve Brocchi'nin Kümeleri dahil) ve galaksileri (Andromeda Gökadası dahil) gözlemleyen İranlı astronom Abdurrahman es-Sufî tarafından yazılan Sabit Yıldızlar Kitabı'dır (964).[23]
Josep Puig'e göre, Endülüslü astronom İbn Bacce, Samanyolu'nun neredeyse birbirine temas eden binlerce yıldızdan meydana geldiğini ve bunun nedeninin Dünya atmosferindeki kırılımdan kaynaklanıyor olabileceğini ileri sürdü, M.S 1106-1107 yıllarında yaşanan Mars-Jüpiter kavuşumunu da buna kanıt olarak gösterdi. Tycho Brahe gibi ilk Avrupalı astronomlar, gece gökyüzünde (daha sonra nova olarak adlandırılacak) yeni yıldızlar tanımlayıp gökyüzünün değişmez olduğunu önerdi. 1584 yılında Giordano Bruno diğer yıldızların aslında diğer güneşler olduğunu, onların yörüngesinde dönen başka gezegenler olabileceğini ve bir kısmının Dünya’ya benzeyebileceğini önerdi.[24] Bu düşünce daha önceden antik Yunan düşünürler Demokritos ve Epikür[25] ve Fahreddin er-Râzî gibi Orta Çağ Müslüman kozmologları[26] tarafından dile getirilmiştir.[27] Sonraki yüzyılda yıldızların uzak güneşler olduğu görüşü astronomlar arasında ortak kabul gören bir düşünce olmuştur. Bu yıldızların Güneş Sistemi üzerinde neden çekimsel bir etki göstermediğini açıklamak için Isaac Newton ve ilahiyatçı Richard Bentley öne sürülen düşüncelerden yararlanarak yıldızların her yönde eşit olarak dağıldığını önerdiler.[28]
İtalyan astronom Geminiano Montanari 1667 yılında Umacı yıldızının parlaklığındaki değişimleri gözlemleyerek kaydetti. Edmond Halley, yakınımızda bulunan bir çift "duran" yıldızın özdevinim hareketinin ilk ölçümlerini yayımlayarak, bu yıldızların Antik Yunan astronomlar Batlamyus ve İparhos zamanından beri konumlarını değiştirdiğini kanıtlamıştır.[24]
Gökyüzündeki yıldızların dağılımını keşfetmeye karar veren ilk astronom William Herschel’dir. 1780’lerde bir dizi ölçü aygıtı yardımıyla 600 yönde bakış doğrultusu boyunca gözlemlediği yıldızları saydı. Bu çalışmayla yıldız sayısının gökyüzünde Samanyolu’nun merkezine doğru gittikçe arttığı sonucuna ulaşmıştır. Aynı çalışmayı güney yarımkürede tekrarlayan oğlu John Herschel de aynı yöndeki artışı tespit etmiştir.[29] William Herschel diğer başarılarının ötesinde, bazı yıldızların yalnızca aynı bakış doğrultusunda yer almalarının yanı sıra çift yıldız sistemi oluşturan fiziksel eşler olduğunu bulmasıyla da tanınır.
Joseph von Fraunhofer ve Angelo Secchi yıldız tayf ölçümünün öncüleridir. Sirius gibi yıldızların tayfını Güneş ile kıyaslayarak soğurma çizgilerinin (yıldız ışığı tayfının atmosferden geçerken belli frekanslarda soğurumu nedeniyle oluşan koyu çizgiler) sayı ve kuvvetlerindeki farklılıkları buldular. 1865 yılında Secchi yıldızları tayf tiplerine göre sınıflamaya başladı.[30] Ancak günümüzde kullanılan yıldız sınıflandırması Annie J. Cannon tarafından 1900’lerde geliştirilmiştir.
Bir yıldıza olan mesafenin ilk doğrudan ölçümü (11.4 ışık yılı uzaklıktaki 61 Cygni) 1838'de paralaks tekniği kullanılarak Friedrich Bessel tarafından yapıldı. Paralaks ölçümleri göklerdeki yıldızların geniş bir şekilde ayrıldığını gösterdi.[24] Çift yıldızların gözlemlenmesi 19. yüzyılda giderek artan bir önem kazanmıştır. 1834 yılında Friedrich Bessel, Sirius yıldızının özdevinim hareketindeki değişiklikleri gözlemleyerek görünmeyen bir eş yıldızın var olduğu sonucuna vardı. Edward Pickering 1899 yılında ilk olarak tayf üzerinde çift yıldızı bulduğunda, Mizar yıldızının 104 günlük periyotlarda ortaya çıkan tayf çizgilerindeki periyodik ayrılmayı gözlemliyordu. William Struve ve S. W. Burnham gibi astronomların birçok çift yıldız sistemini gözlemlerinin detayları yörünge özelliklerinin hesaplanmasıyla yıldızların kütlelerinin belirlenmesine olanak sağlamıştır. Teleskop ile yapılan gözlemlerden çift yıldızların yörüngelerinin hesaplanması problemi ilk olarak Felix Savary tarafından 1827’de çözülmüştür.[31] Yirminci yüzyılda yıldızların bilimsel incelemesi alanında hızlı gelişmeler yaşandı. Fotoğraf önemli bir astronomik araç oldu. Karl Schwarzschild bir yıldızın renginin ve dolayısıyla sıcaklığının görünen kadir derecesi ile fotoğrafik kadir derecesinin karşılaştırılması sonucunda belirlenebileceğini buldu. Fotoelektrik ışıkölçerin (fotometrenin) geliştirilmesi birçok dalga boyu aralığında çok hassas kadir ölçümüne olanak verdi. 1921 yılında Albert A. Michelson, Wilson Dağı Gözlemevi'ndeki Hooker teleskobunda interferometri kullanarak yıldız çapının ilk ölçümlerini yapmıştır.[32]
Yirminci yüzyılın başlarında yıldızların fiziksel temeli üzerine önemli çalışmalar yapılmıştır. 1913 yılında geliştirilen Hertzsprung-Russell diyagramı, yıldızların astrofiziği üzerine çalışmaların ilerlemesini sağlamıştır. Yıldızların içini ve evrimini açıklayacak başarılı modeller geliştirilmiştir. İlk olarak 1925 yılında Cecilia Payne-Gaposchkin yazdığı bir doktora tezinde yıldızların ağırlıklı olarak hidrojen ve helyumdan oluştuğunu önermiştir.[33] Kuantum fiziğindeki gelişmelerle birlikte yıldız ışığının tayfları başarı ile açıklanabilmiştir. Bu sayede yıldızların atmosferlerinin kimyasal bileşimi de belirlenebilmiştir.[34]
Süpernovalar hariç, tek yıldız sistemleri çoğunlukla Yerel Grup'ta[35] ve özellikle Samanyolu'nun görünür kısmında (galaksimiz için mevcut detaylı yıldız kataloglarında gösterildiği gibi) gözlemlenmiştir.[36] Ancak kimileri Dünya'dan yaklaşık 100 milyon ışık yılı uzaklıkta bulunan Başak Kümesi'nin M100 adlı galaksisinde de gözlemlenebilmiştir.[37] Başak Süperkümesi'nde yıldız kümelerini görmek mümkündür ve mevcut teleskoplar prensipte Yerel Gruptaki zayıf ışığa sahip tek yıldız sistemlerini gözlemleyebilir[38] (bkz. Sefeidler). Ancak galaksilerin Yerel Üstkümesi dışında ne tek yıldız sistemleri ne de yıldız kümeleri gözlemlenebilmiştir. Bunun tek istisnası, bir milyar ışık yılı uzaklıkta yer alan ve yüz binlerce yıldız içeren büyük bir yıldız kümesinin zayıf bir görüntüsüdür[39] (daha önce gözlemlenen en uzak yıldız kümesinden çok daha fazla yıldıza sahiptir).
Şubat 2018'de, ilk kez astronomlar, reiyonizasyon döneminde (Büyük Patlama'dan yaklaşık 180 milyon yıl sonrasında)[40] ilk oluşan yıldız formlarından dolaylı olarak ışık tespit ettiler.
Nisan 2018'de, astronomlar Icarus (resmi adıyla MACS J1149 Lensed Star 1) adında en uzakta yer alan (Dünya'dan yaklaşık 9 milyar ışık yılı uzaklıkta) bir anakol yıldızı tespit etmiştir.[41][42]
Mayıs 2018'de, astronomlar, Atacama Large Millimeter Array ve Very Large Telescope adlı iki teleskobu kullanarak evren henüz 250 milyon yıl yaşındayken oluşmuş; 13,3 milyar ışık yılı uzaklıktaki bir galaksi keşfetti ve bu galaksi oksijenin tespit edildiği en uzak yerdir.[43]
Takımyıldız kavramının Babilliler döneminde varolduğu bilinmektedir. Eski gökyüzü gözlemcileri yıldızların belirgin düzenlerinin bir resim oluşturduğunu hayal etmiş ve bunu da kendi mitleriyle ve doğada gördükleriyle özdeşleştirmişlerdir. Tutulum (ekliptik) çemberi üzerinde yer alan on iki takımyıldızı astrolojinin temelini oluşturmuştur. Belirgin olan birçok yıldıza da genelde Arapça ya da Latince isimler verilmiştir.
Takımyıldızların bazılarının ve Güneş’in kendi mitleri bulunur.[44] Bunların ölülerin ruhu ya da tanrılar oldukları düşünülürdü. Örneğin Umacı yıldızının Gorgon Medusa’nın gözünü temsil ettiğine inanılırdı.
Eski Yunan dininde, sonradan gezegen olarak tanımlanan bazı "yıldızlar" önemli tanrıları temsil ederdi. Gezegenlerin adı da bu tanrılardan gelir: Merkür, Venüs, Mars, Jüpiter ve Satürn.[44] (Uranüs ve Neptün de Yunan ve Roma tanrılarıdır; ancak her ikisi de eski çağlarda düşük parlaklıkları yüzünden bilinmiyordu. Bu gezegenlerin isimleri daha sonraki astronomlar tarafından verilmiştir.
1600'lerde takımyıldızların isimleri gökyüzünün o bölgesindeki yıldızları adlandırmak için kullanılıyordu. Alman astronom Johann Bayer’in bir dizi yıldız haritası yaratarak her takımyıldızdaki yıldızı Yunan harfleriyle tanımlamasıyla Bayer belirtmesini oluşmuştur. Daha sonraları İngiliz astronom John Flamsteed’in kullandığı rakamlardan oluşan sisteme de Flamsteed belirtmesi adı verilmiştir. Yıldız katalogları çıktıktan sonra da birçok ek belirtme sistemi hazırlanmıştır.
Yıldızları ve diğer gökcisimlerini adlandırma konusunda bilimsel toplulukta tek yetkili kurum Uluslararası Astronomi Birliği’dir ("International Astronomical Union - IAU").[45] Bazı özel şirketler yıldızlara isim sattıklarını iddia eder ancak bunlar ne bilim topluluğu tarafından tanınır ne de kullanılır.[45] Astronomi ile ilgilenenler bu tip davranışları, yıldızların adlandırılma prosedürünü bilmeyen insanları hedef seçen bir tür dolandırıcılık olarak görür.[46]
Yıldız değişkenlerinin çoğu MKS ölçüm sistemi ile belirtilse de bazen cgs ölçüm sistemi de kullanılır (örneğin parlaklığın erg/saniye olarak belirtilmesi gibi.) Kütle, aydınlatma gücü ve yarıçap genel olarak Güneş’in özelliklerinin temel alındığı birimlerle ifade edilir. 2015 yılında IAU, yıldız değişkenlerini belirtebilmek için kullanılabilecek bir dizi nominal güneş değeri (belirsizlikler olmadan SI sabitleri olarak tanımlanmıştır) tanımladı:
nominal güneş aydınlatma gücü: | L⊙ = 3.828 × 1026 W[47] |
nominal güneş yarıçapı: | R⊙ = 6.957 × 108 m[47] |
Güneş kütlesi M⊙, Newton yerçekimi sabiti G'nin büyük bağıl belirsizliği (10 −4) nedeniyle IAU tarafından açıkça tanımlanmadı. Bununla birlikte, Newton yerçekimi sabiti ve güneş kütlesi (GM⊙) çarpıldığında elde edilen sonucun çok daha hassas olduğu bilindiğinden, IAU nominal güneş kütlesi değişkenini şu şekilde tanımlamıştır:
nominal güneş kütlesi değişkeni: | GM⊙ = 1.3271244 × 1020 m3 s−2[47] |
Bununla birlikte, CODATA'nın en güncel Newton yerçekimi sabiti tahmini (2014) kullanılarak nominal güneş değişkeni yaklaşık 1.9885 × 1030 kg olarak ölçülebilir. Parlaklık, yarıçap, kütle değişkeni ve kütle için kesin değerler, gözlemsel belirsizlikler nedeniyle gelecekte biraz değişecekse de 2015 IAU nominal sabitleri, yıldız değişkenlerini belirtmek için oldukça yararlı olduklarından aynı SI değerlerinde kalacaktır.
Dev bir yıldızın yarıçapı ya da bir çift yıldız sisteminin ana ekseni gibi büyük uzunluklar genellikle astronomik birim (AU) ile belirtilir. Bir AU yaklaşık olarak Dünya ile Güneş arasındaki ortalama uzaklığa eşittir. (150 milyon km veya yaklaşık 93 milyon mil). IAU 2012'de, astronomik sabiti tam 149.597.870.700 m olarak tanımladı.[47]
Yıldızlar, uzayda bulunan yüksek yoğunluktaki (yine de Dünya üzerindeki bir vakum odasından daha az yoğun olan) madde bulutlarının içlerinde doğar. Moleküler bulutlar olarak bilinen bu bölgeler, çoğunlukla hidrojenden oluşmakla birlikte yaklaşık %23–28 helyum ve az miktarda daha ağır elementleri içerir. Orion Bulutsusu bu yıldız doğumhanelerine bir örnektir.[48] Çoğu yıldız düzinelerce ilâ yüz binlerce yıldızı içerebilen yıldız gruplarının içinde doğar.[49] Bu bulutlardan büyük yıldızlar oluştukça, içinde bulundukları bulutları güçlü bir şekilde ışıklandırıp iyonlaştırırlar ve bir H II bölgesi yaratırlar. Yıldız oluşumundan kaynaklanan bu tür etkiler nihayetinde bulutu bozabilir ve yeni yıldız oluşumunu engelleyebilir.
Tüm yıldızlar ömürlerinin büyük çoğunluğunu çekirdeklerindeki hidrojeni helyuma dönüştürdükleri anakol evresinde geçirirler. Bununla birlikte yıldızlar kütlelerinin büyüklüğüne göre gelişimlerinin çeşitli aşamalarında farklı yollar izlerler. Daha büyük yıldızların nihai kaderi, göreli olarak kendilerinden daha az kütleye sahip yıldızlardan farklıdır. Buna göre, astronomlar genellikle yıldızları kütlelerine göre gruplandırırlar:[50]
Bir yıldızın oluşumu, bir moleküler bulutun içinde oluşan ve sıklıkla bir süpernovanın (büyük yıldız patlamaları) ya da iki galaksinin çarpışmasından oluşan şok dalgalarının tetiklediği kütleçekimsel bir kararsızlık ile başlar.[51][52] Jeans Kararsızlığı kriterlerini sağlayacak kadar bir madde yoğunluğuna erişen bölge kendi kütleçekimsel kuvveti altında çökmeye başlar.[53]
Bulut çöktükçe, Bart damlacığı adı verilen ve yoğun toz ile gazdan oluşan ayrık kümelenmeler oluşur. Bunların içinde 50 güneş kütlesine kadar madde bulunabilir. Yuvar çöktükçe ve yoğunluk arttıkça kütleçekimsel enerji ısıya dönüşür ve sıcaklık artar. Önyıldız bulutu hidrostatik denge durumunda dengeli bir duruma yaklaştığında, bulutun merkezinde bir önyıldız oluşur.[54] Bu anakol öncesi yıldızlar genelde bir ön gezegen diskiyle çevrelenmiştir. kütleçekimsel büzülme dönemi 10–15 milyon yıl kadar sürer.
İki Güneş kütlesinden az kütleye sahip genç yıldızlara T Tauri yıldızı, daha yüksek kütleye sahip olan yıldızlara da Herbig Ae/Be yıldızları denir. Bu yeni doğan yıldızlar dönme ekseni boyunca gaz jetleri yayar, bu da çöken yıldızın açısal momentumunu azaltabilir ve Herbig-Haro nesneleri olarak bilinen küçük bulutlar oluşabilir.[55] Bu jetler, yakındaki devasa yıldızlardan gelen radyasyon ile birlikte, yıldızın oluştuğu çevreleyen bulutun uzaklaştırılmasına yardımcı olabilir.[56]
Gelişmelerinin başlarında T Tauri yıldızları kabaca sıcaklarının aynı kalıp parlaklıklarının azaldığı Hayashi evresindedirler. Daha az kütleli T Tauri yıldızları anakol evresine kadar burada kalırken daha kütleli yıldızlar Henyey evresine geçerler.
Yıldızlar yaşam sürelerinin %90’ında çekirdekleri yakınında yüksek sıcaklık ve basınç altında gerçekleşen nükleer füzyonla hidrojeni helyuma çevirir. Anakolun başlangıcından itibaren yıldız çekirdeğindeki helyum oranı düzenli olarak artar ve bu da çekirdekteki nükleer füzyonu arttırarak yıldızın daha parlak ve sıcak olmasına yol açar.[57] Örneğin yaklaşık 4,6 milyar yıl önce anakola giren Güneş’in o zamandan beri parlaklığının %40 arttığı tahmin edilmektedir.[58]
Her yıldız sürekli olarak gazın uzaya akmasına neden olan bir yıldız rüzgârı üretir. Yıldızların çoğu için kaybedilen bu kütle miktarı kayda değer değildir. Güneş her yıl 10−14 Güneş kütlesi kadar ya da diğer bir deyişle tüm hayatı boyunca kütlesinin %0,01’i kadar bir kütle kaybeder.[59] Ancak çok büyük yıldızlar gelişimlerini önemli derecede etkileyecek olan 10−7 ile 10−5 Güneş kütlesi arasında madde kaybeder. 50 güneş kütlesinden daha büyük bir kütle ile hayatlarına başlayan yıldızlar anakolda kaldıkları süre boyunca toplam kütlelerinin yarısını kaybedebilirler.[60][61]
Bir yıldızın anakolda bulunacağı süreyi yakılacak yakıtın miktarı ve yanma hızı, başka bir deyişle başlangıçtaki kütlesi ve parlaklığı belirler. Güneş için bu sürenin yaklaşık 1010 yıl olduğu tahmin edilmektedir. Büyük yıldızlar yakıtlarını çok hızlı yakarlar ve ömürleri kısa olur. Kırmızı cüce adı verilen küçük yıldızlar ise büyük yıldızların aksine yakıtlarını çok yavaş yakar ve on ile yüz milyar yıl arasında yaşamlarını sürdürürler. Yaşamlarının sonuna doğru gittikçe parlaklıklarını kaybederler ve kara cüceye dönüşürler. Böyle yıldızların yaşam süreleri evrenin şimdiki yaşından (13,7 milyar yıl) daha büyük olduğu için kara cücelerin var olması henüz beklenmemektedir.
Kütlenin yanı sıra helyumdan daha ağır elementlerin miktarı da yıldızların gelişiminde önemli rol oynar. Astronomide helyumdan ağır elementlerin tamamı "metal" olarak değerlendirilir ve bu elementlerin kimyasal derişimine metallik denir. Yıldızın metalliği, yakıtını yakacağı süreyi etkiler ve mıknatıssal alanların oluşumunu kontrol eder[62][63] ve yıldız rüzgârının gücünü değiştirir. Daha yaşlı öbek II yıldızlar oluştukları moleküler bulutların bileşimi nedeniyle daha genç olan öbek I yıldızlara göre önemli oranda az metalliğe sahiptirler. Bu bulutlar zaman geçip yaşlı yıldızlar öldükçe atmosferlerinin bir kısmından gelen metallerle zenginleşmiştir.
En az 0.4 güneş kütlesine sahip yıldızlar çekirdeklerindeki hidrojeni tükettiklerinde geriye kalan hidrojeni artık helyumdan ibaret çekirdeğinin dışındaki bir kabukta kaynaştırmaya başlar.[4] Kırmızı dev formunu aldıkça dış katmanları genişlemeye ve soğumaya başlar. Yaklaşık 5 milyar yıl sonra Güneş helyumu kaynaştırma aşamasına gelecek ve yarıçapı 1 astronomik birime ve mevcut boyutu da 250 katına çıkacak fakat mevcut kütlesinin %30'unu kaybedecektir.[58][64]
Hidrojen kabuğu yanması daha fazla helyumu ortaya çıkarttığından çekirdeğin kütlesi ve sıcaklığı artar. 2.25 güneş kütlesine sahip bir kırmızı devin helyum çekirdeği helyum füzyonundan önce dejenere olur. Son olarak, sıcaklık yeterince arttığında helyum füzyonu helyum parlaması adı verilen bir olayla aniden başlar ve yıldızın yarıçapı hızla küçülüp yüzey sıcaklığı artar ve yıldız HR diyagramının yatay dalına geçer. Daha büyük yıldızlarda helyum çekirdeğinin füzyonu çekirdek dejenere olmadan başlar ve yıldız, dış konvektif zarf çökmeden ve yıldız yatay dala geçmeden önce helyumu yavaşça yaktığı kırmızı kümede biraz zaman harcar.[6]
Yıldız çekirdeğindeki helyumu kaynaştırdığında açığa çıkan karbon, dışı helyum kabuğu ile örtülü çok daha sıcak bir çekirdeği meydana getirir. Yıldız asimptotik dev dal (ADD) adı verilen bir döneme girer fakat açıklanan diğer kırmızı devlere göre daha parlaktır. Daha büyük ADD yıldızları, çekirdek dejenere hale gelmeden önce kısa bir karbon füzyonu sürecine girebilir.
Dokuz güneş kütlesinden daha fazla kütleye sahip olan yıldızlar önce mavi ve sonra da kırmızı bir üstdev olacak şekilde genişler. Özellikle büyük yıldızlar, güçlü konveksiyon akım ve yoğun kütle kaybı nedeniyle yüzeye ulaşan hidrojenden daha ağır elementlerin emisyon çizgilerinin hakim olduğu spektrumlarla karakterize olan bir Wolf-Rayet yıldızına dönüşebilir.
Helyum büyük bir yıldızın çekirdeğinde tükendiğinde, çekirdek kasılır ve sıcaklık ve basınç karbonu kaynaştıracak kadar yükselir (bkz. Karbon yakma işlemi). Bu süreç, oksijen (bkz. Oksijen yakma işlemi), neon (bkz. Neon yakma işlemi) ve silikon'un (silikon yakma işlemi) yakılmasıyla devam eder. Yıldızın yaşamının sonuna kadar füzyon, çekirdekte tıpkı soğan kabukları gibi tabakalar oluşturarak devam eder. Her kabukta farklı bir element çekirdek kaynaşmasına uğrar. En dışta hidrojen, içeri doğru helyum ve sonra diğer ağır elementler diye devam eder.[65]
Son aşamaya, yıldız demir üretmeye başlayınca ulaşılır. Demir atomu çekirdeği diğer ağır elementlerin çekirdeklerinden daha sıkıca bağlandığı için demir ötesi elementlerden yeterli füzyon enerjisi açığa çıkmaz. Çok sınırlı bir ölçüde böyle bir süreç devam eder; ancak enerji tüketir. Benzer şekilde tüm hafif çekirdeklerden daha sıkı bağlandıkları için, bu enerji fisyonla serbest bırakılamaz.[66]
Gelişiminin sonunda, ortalama büyüklükte bir yıldız artık dış katmanlarını kaybederek bir gezegenimsi bulutsuya dönüşür. Eğer dış atmosferi döküldükten sonra kalan kütle 1,4 güneş kütlesinden az ise görece oldukça küçük bir nesne (yaklaşık Dünya kadar) hâline gelene kadar küçülür. Daha fazla sıkışmanın oluşması için yeterince büyük olmayan bu yıldızlara beyaz cüce denir.[67] Her ne kadar yıldızlar plazma yuvarları olarak tanımlansalar da beyaz cücenin içindeki elektron yozlaşmış madde artık plazma değildir. Beyaz cüceler oldukça uzun zaman sonra kara cücelere dönüşeceklerdir.
Daha büyük yıldızlarda demir çekirdek artık kendi kütlesini destekleyemeyecek kadar, yani 1,4 güneş kütlesinden daha fazla büyüyene kadar çekirdek kaynaşması devam eder. Çekirdeğin içindeki elektron proton yönlendirilince ve ters beta bozunması ya da elektron yakalanması ile patlayıp nötron ve nötrinolar oluşturunca çekirdek birdenbire çöker. Bu çökmenin oluşturduğu şok dalgaları yıldızın geri kalanının bir süpernova olarak patlar. Süpernovalar o kadar parlaktır ki kısa süre içinde bulunduğu galaksinın tamamından daha parlaktır. Samanyolunda oluştuklarında, tarih boyunca daha önce yıldız görülemeyen yerlerde ortaya çıkan "yeni yıldızlar" olarak gözlemlenmişlerdir.[68]
Yıldızın maddesinin çoğu, süpernova patlamasıyla uzaya kaçar ve Yengeç Bulutsusu gibi bulutlar oluşturur.[68] Geri kalan bir Nötron yıldızı hâline gelir (kendilerini bazen Pulsar ya da X ışını patlaması şeklinde gösterir) ya da dört güneş kütlesine eşdeğer bir kalıntı bırakacak kadar büyük bir yıldız ise kara delik olur.[69] Bir nötron yıldızında madde, nötron yozlaşmış madde denilen hâlde bulunur ve çekirdekte de Kuark maddesi denen daha da egzotik bir yozlaşmış madde bulunur. Karadeliğin içindeki maddenin hâli henüz anlaşılamamıştır.
Ölen yıldızların kaçan dış katmanları yeni yıldız oluşumunda kullanılabilecek ağır elementleri de içerir. Bu ağır elementler kayalık gezegenlerin oluşumuna izin verir. Süpernovalardan ve yıldız rüzgârlarından çıkan akış, yıldızlararası ortamın şekillendirilmesinde önemli rol oynar.[68]
Çift yıldız sistemlerinin anakol sonrası gelişimleri kendileriyle aynı kütledeki tek yıldızlardan önemli ölçüde farklı olabilir. İkili sistemdeki yıldızlar yeterince yakınsa, yıldızlardan biri kırmızı bir dev olmak için genişlediğinde, Roche lobunu taşar ise kendi kütlesinin bir kısmını diğer yıldıza aktarabilir. Roche lobu taştığında ise felaket değişkenleri ve tip Ia süpernovaları dahil olmak üzere çeşitli fenomenler ortaya çıkabilir.
Yıldızların çoğunluğunun kütleçekimi ile birbirine bağlı çoklu yıldız sistemlerinde çift yıldızları oluşturduğu çok uzun zamandır kabul görmüş bir varsayımdır. Bu özellikle çok büyük olan O ve B sınıfı yıldızlar için özellikle doğrudur ve %80’i çoklu sistemdir. Ancak daha küçük yıldızlarda tek yıldız sistemlerinin oranı artar; kırmızı cücelerin yalnızca %25’inin bir eşi olduğu bilinmektedir. Tüm yıldızların %85’i kırmızı cüce olduğuna göre Samanyolu’ndaki yıldızları çoğu doğuştan tektirler.[70]
Daha geniş kümelere yıldız kümesi denir. Bunlar birkaç yıldızlık yıldız topluluklarından yüzlerce, binlerce yıldızdan oluşan devasa küresel kümelere kadar sıralanırlar.
Yıldızlar evrende düzenli bir şekilde dağılmamış ve normalde yıldızlararası gaz ve tozla birlikte galaksilerde toplanmışlardır. Sıradan bir galaksiiçinde yüzlerce milyar yıldız bulunur ve gözlemlenebilir evrende 100 milyardan (1011) daha fazla galaksivardır.[71] Genelde yıldızların sadece galaksilerde olduğuna inanılsa da galaksilerarası yıldızlar da bulunmuştur.[72]
Astronomlar gözlemlenebilir evrende en azından 70 seksilyon (7×1022) yıldız olduğunu tahmin etmektedir.[73] Bu Samanyolumuzda bulunan 300 milyar yıldızın 230 milyar katıdır.
Güneş’ten sonra Dünya’ya en yakın yıldız 39,9 trilyon (1012) kilometre ya da 4,2 ışık yılı uzaklıkta olan Proxima Centauri’dir. Bu yıldızın ışığının dünyaya ulaşması için 4,2 yıl gerekmektedir. Uzay Mekiği’nin yörünge hızıyla (saniyede 8 kilometre — yaklaşık saatte 30,000 kilometre) yolculuk edersek Proxima Centauri’ye ulaşmak için 150.000 yıl gerekecektir.[74] Buna benzer uzaklıklar galaksitekerlerinde, Güneş’in çevresi de dahil olmak üzere tipik uzaklıklardır.[75] Yıldızlar galaksilerin merkezinde ve küresel kümelerde birbirlerine çok daha yakın olabildikleri gibi, galaksi halesinde çok daha uzak olabilirler.
Düşük yoğunlukları nedeniyle galaksilerde yıldızların birbiriyle çarpışmasının oldukça nadir olduğu düşünülür. Ancak galaksimerkezi ile küresel kümenin çekirdeği gibi daha yoğun bölgelerde bu çarpışmalara daha sık rastlanır.[76] Bu tür çarpışmalar sonucunda mavi başıboşlar diye bilinen oluşumlar olur. Bunlar anakolda aynı parlaklığa sahip yıldızlardan daha yüksek yüzey sıcaklığına sahip anormal yıldızlardır.[77]
Yıldızların hemen hemen tüm özelliklerini başlangıçtaki kütlesi belirler. Bu özelliklerin arasında parlaklık, büyüklük, yıldızın gelişimi, yaşam süresi ve kaçınılmaz sonu da bulunur.
Yıldızların çoğu 1 milyar ile 10 milyar yıl arasında yaşa sahiptir. Bazı yıldızlar gözlemlenen evrenin yaşı olan 13,7 milyar yaşına yakındır.[78] Yıldız ne kadar büyük olursa yaşam süresi de o kadar kısa olur çünkü büyük yıldızların çekirdeklerinde daha büyük olan basınç hidrojenin daha hızlı yanmasına neden olur. En büyük yıldızlar ortalama bir milyon yıl yaşarlarken minimum kütleye sahip olan kırmızı cüceler yakıtlarını çok yavaş yaktıklarından on ile yüz milyar yıl arasında yaşarlar.
Kütle | Anakol | Altdev | Kırmızı dev | Çekirdekte Helyum yanması |
---|---|---|---|---|
1.0 | 7.41 | 2.63 | 1.45 | 0.95 |
1.5 | 1.72 | 0.41 | 0.18 | 0.26 |
2.0 | 0.67 | 0.11 | 0.04 | 0.10 |
Yıldızlar oluştuklarında yaklaşık kütlelerinin %71’i hidrojen, %27’i helyum,[80] geri kalanı da metallerdir. Genel olarak metallerin oranı yıldız atmosferlerinde bulunan demir içeriğiyle belirlenir çünkü demir hem sık bulunan bir metaldir hem de soğurma çizgileri görece daha kolay ölçülür. Yıldızların oluştuğu moleküler bulutlar süpernova patlamalarıyla sürekli olarak metallerle zenginleştiğinden bir yıldızın kimyasal bileşimi yaşını belirlemek için kullanılır.[81] Metallerin oranı ayrıca yıldızın bir gezegen sisteminin olması olasılığının da bir göstergesi olabilir.[82] Daha ağır elementlerin varlığı, yıldızın bir gezegen sistemine sahip olma olasılığını arttırır.[83]
Bugüne kadar ölçülen en düşük demir içeriğine sahip olan yıldız HE1327-2326 no.lu cücedir. Güneş’in demir içeriğinin 200.000'de birine sahiptir.[84] Bunun aksine demir zengini μ Leonis Güneş'in sahip olduğunun iki katı kadar demir içeriğine sahipken bir gezegene sahip olan 14 Herculis bunun üç katı kadarına sahiptir.[85] Spektrumlarında, belirli elementlerin (özellikle krom ve nadir toprak elementleri) olağan dışı bolluklarını gösteren kimyasal açıdan tuhaf olarak tanımlanabilecek yıldızlar da vardır. Güneş de dahil olmak üzere daha soğuk dış atmosfere sahip yıldızlar çeşitli iki ve çok atomlu moleküller oluşturabilir.[86]
Dünya’ya olan büyük uzaklıkları nedeniyle Güneş dışındaki tüm yıldızlar, Dünya’nın atmosferinin etkisiyle gece gökyüzünde göz kırpan parlak noktalar olarak insan gözüne görünürler. Yıldız tekerleri yeryüzündeki optik teleskoplar tarafından gözlemlenemeyecek kadar küçük açısal boyutlarda olduklarından bu nesnelerin resimlerini alabilmek için interferometri içeren teleskoplar gerekir. Güneş de bir yıldızdır ancak teker olarak görünecek ve gün ışığı sağlayacak kadar Dünya’ya yakındır. Güneşten sonra en büyük görünen boyuttaki yıldız yalnızca 0,057 SOA’lık açısal çapı olan R Doradus yıldızıdır.[87]
Yıldızlar bir şehirden daha büyük olmayan nötron yıldızlarından Orion takımyıldızında bulunan ve Güneş’in 1.000 katı büyük olan yaklaşık 1,6 milyar kilometrelik çapı olan Betelgeuse gibi üstdevlere kadar sıralanırlar.[88][89] Ancak Betelgeuse’ün yoğunluğu Güneş'inkinden çok daha azdır.[90]
Bir yıldızın Güneş’e göre hareketi yıldızın kaynağı ve yaşı için olduğu kadar yapısı ve bulunduğu galaksinin gelişimi hakkında da önemli bilgiler sağlayabilir.
Bir yıldızın özdevinimi teğetsel hızıdır. Bunun belirlenmesi için yılda mas (mili SOA) birimi kullanılarak çok hassas gökölçümleri yapılır. Bir yıldızın ıraklık açısını belirleyerek bir yıldızın özdevinimi hız birimlerine çevrilebilir. Yüksek özdevinimi olan yıldızlar Güneş’e görece daha yakın olan yıldızlardır ve ıraklık açısı ölçümü için oldukça iyi adaylardır.[92]
Dikeyhız yıldızın Güneş'e doğru ya da Güneş'ten uzağa olan hızıdır. Bu hız tayf çizgilerindeki doppler kayması ile belirlenir ve birimi kilometre/saniyedir.
Her iki hareket hızı da belirlendikten sonra bir yıldızın Güneş’e ya da galaksiye göre olan uzay hızı belirlenebilir. Yakın yıldızlar arasında öbek I yıldızların daha yaşlı olan öbek II yıldızlara göre daha düşük hızlara sahip oldukları bulunmuştur. Öbek II yıldızların galaksidüzlemine eğik olan eliptik yörüngeleri bulunur.[93] Yakındaki yıldızların devinimlerinin karşılaştırılması sonucunda yıldız toplulukları da tanımlandı. Bunlar büyük bir olasılıkla oluşumlarının kaynağında aynı dev moleküler bulutları paylaşıyorlardı.
Bir yıldızın manyetik alanı, konvektif dolaşımın meydana geldiği iç kısımlarda oluşur. İletken plazmanın bu hareketi, bir dinamo gibi işlev görür, buradaki elektrik yüklerinin hareketi, mekanik bir dinamo gibi manyetik alanları uyarır. Bu manyetik alanlar yıldız boyunca ve ötesinde geniş bir yelpazeye sahiptir. Manyetik alanın gücü yıldızın kütlesine ve bileşimine göre değişir ve yüzey manyetik aktivitesinin miktarı yıldızın dönüş hızına bağlıdır. Bu yüzey aktivitesi, manyetik alanın güçlü olduğu ve yüzey sıcaklığının normalden düşük olduğu yerlerde yıldız lekeleri oluşturur. Koronal döngüler, bir yıldızın yüzeyinden dış atmosferine yani koronasına kadar yükselen kemer şeklinde hareket eden manyetik alan akımı çizgileridir. Koronal döngüler, aldıkları yol boyunca sürükledikleri plazma nedeniyle görülebilir. Güneş püskürtüsü, aynı manyetik aktivite nedeniyle yayılan yüksek enerjili parçacıkların patlamasıdır.[94]
Hızlı dönen genç yıldızlar, manyetik alanları nedeniyle yüksek yüzey aktivitesine sahip olma eğilimindedir. Manyetik alan, yıldız rüzgarı üzerinde hareket edebilir ve zaman içinde dönme hızını yavaş yavaş düşürmek için bir fren işlevi görür. Bu nedenle, Güneş gibi yaşlı yıldızlar çok daha yavaş dönme hızına ve daha düşük bir yüzey aktivitesine sahiptir. Yavaşça dönen yıldızların aktivite seviyeleri döngüsel olarak değişme eğilimindedir ve belirli bir süre boyunca tamamen durabilirler.[95] Örneğin, 70 yıl süren Maunder Minimum dönemi boyunca hiç güneş lekesi oluşmamıştır.
Bilinen en büyük yıldızlardan biri, Güneş’in kütlesinin 100 – 150 katı büyük olan ve birkaç milyon yıllık çok kısa bir yaşam süresine sahip olan Eta Carinae yıldızıdır.[96] Yakın geçmişte yapılan Arches kümesindeki bir çalışma evrenin içinde bulunduğu dönem içinde 150 güneş kütlesinin üst sınır olduğunu önermektedir.[97] Bu sınırlamanın nedeni kesin olarak bilinmese de kısmen bir yıldızın atmosferinden gazları kaçırmadan geçebilecek olan en yüksek aydınlatma gücü miktarını belirleyen Eddington aydınlatma gücü nedeniyle olduğu düşünülmektedir.
Big Bang’ten hemen sonra oluşan yıldızlar, bileşimlerinde lityumdan daha ağır metal bulunmaması nedeniyle 300 güneş kütlesi ya da daha büyük olabilirler.[98] Bu aşırı büyük Öbek III yıldızların soyu çok uzun zamandır tükenmiştir ve ancak teorik olarak bulunurlar.
Jüpiter gezegeninin kütlesinin 93 katı bir kütleye sahip olan ve AB Doradus A yıldızının eşi olan AB Doradus C yıldızı, çekirdeğinde çekirdek kaynaşması süren bilinen en küçük yıldızdır.[99] Güneş’e benzer metallikte olan ve teorik olarak çekirdeğinde hâlâ çekirdek kaynaşması sürebilecek olan minimum kütle yaklaşık olarak Jüpiter’in 75 katı olarak tahmin edilmektedir.[100][101] Ama metallik düşük olduğunda, sönük yıldızlar üzerine yapılan bir çalışma minimum yıldız boyutunun Güneş'in %8,3’ü yani Jüpiter’in kütlesinin yaklaşık 87 katı olduğunu göstermektedir.[101][102] Bundan daha küçük boyutta olan yıldızlara kahverengi cüceler denir ve yıldızlar ile gaz devleri arasında çok iyi tanımlanamamış bölgede yer alırlar.
Yıldızın yarıçapı ve kütlesi yüzeydeki kütleçekimini belirler. Dev yıldızlar anakoldaki yıldızlardan daha düşük bir yüzey kütleçekimine sahip iken beyaz cüceler gibi yozlaşmış yoğun yıldızların yüzey kütleçekimi daha büyüktür. Yüzey kütleçekimi yıldız ışığının tayfını etkiler; daha yüksek kütleçekimi soğurma çizgilerini genişletir.[34]
Yıldızların dönme hızı tayf ölçümü ile yaklaşık olarak tahmin edilebilir ya da yıldız lekelerinin dönme hızının izlenmesiyle daha kesin olarak belirlenebilir. Genç yıldızlar ekvatorlarında 100 km/s’yi geçen büyük dönme hızlarına sahiptir. Örneğin B sınıfı yıldız Achernar kutuplar arasındaki uzaklıktan %50 daha büyük bir eşlek çapına yol açan yaklaşık 225 km/s’lik ya da daha büyük bir eşlek dönme hızına sahiptir. Bu hız ulaşıldığında yıldızın parçalanacağı dönüşül (kritik) hız olan 300 km/s’den çok az düşük olan bir hızdır.[103] Karşılaştırıldığında Güneş ancak her 25 – 35 günde bir döner ve ekvator dönme hızı 1.994 km/s’dir. Bir yıldız anakol üzerinde gelişimini sürdürürken, mıknatıssal alanı ve yıldız rüzgârı dönme hızını önemli miktarda azaltmaktadır.[104]
Sıkışık yıldız yoğun bir kütleye sıkıştıklarından yüksek bir dönme hızına sahiptirler. Ancak açısal momentum korunumundan (dönen bir cismin boyutundaki küçülmeye karşın dönme hızını arttırması) beklendiği hıza nazaran oldukça düşük dönme hızlarına sahiptir. Yıldızın açısal devinirliğinin önemli bir kısmı yıldız rüzgârının sonucunda oluşan kütle kaybıyla dağılır.[105] Bunun yanı sıra bir pulsarın (atarca) dönme hızı oldukça yüksektir. Örneğin Yengeç bulutsusunun merkezindeki atarca saniyede 30 kere döner.[106] Atarcanın dönme hızı ışınım nedeniyle giderek yavaşlayacaktır.
Anakoldaki bir yıldızın yüzey sıcaklığı çekirdekteki enerji üretim hızı ve yıldızın yarıçapı ile belirlenir ve genellikle yıldızın renk ölçeğinden hesap edilir.[107] Sıcaklık normalde, yüzey alanı başına yıldız ile aynı parlaklığa sahip ideal bir kara cismin saçtığı enerji miktarına eş olan etkin sıcaklık değerinde verilir. Sıcaklık çekirdeğe doğru arttıkça, etkin sıcaklığın sadece yüzey hakkında bilgi verdiği de unutulmamalıdır.[108] Bir yıldızın çekirdeğindeki sıcaklık birkaç milyon kelvine ulaşabilir.[109]
Yıldız sıcaklığı değişik elementlerin enerji kazanma ya da iyonlaşma hızını belirleyebileceğinden tayf üzerinde karakteristik soğurma çizgileri olarak belirirler. Bir yıldızın yüzey sıcaklığı, mutlak parlaklığı ve soğurma özellikleri ile yıldızın sınıflandırılmasında kullanılır. (aşağıdaki sınıflandırma bölümüne bakın).[34]
Anakolda yer alan büyük yıldızlar 50,000 K’e varan yüzey sıcaklıklarına sahip olabilirler. Güneş gibi daha küçük olan yıldızların yüzey sıcaklıkları birkaç bin K.'dir. Kırmızı devler 3,600 K gibi görece düşük bir yüzey sıcaklığına sahip olmalarına rağmen çok geniş dış yüzey alanları nedeniyle yüksek parlaklığa sahiptirler.[110]
Çekirdek kaynaşmasının bir ürünü olarak yıldızlar tarafından üretilen enerji hem elektromanyetik radyasyon hem de parçacık ışınımı olarak uzaya yayılır. Yıldız tarafında yayılan parçacık ışınımı yıldız rüzgârı (yıldızın dış katmanlarından yayılan serbest Proton, alfa parçacığı ve beta parçacığı gibi elektrikle yüklü parçacıkların düzenli akışı olarak görülür) ve yıldız çekirdeğinden çıkan düzenli bir nötrino akışı olarak kendini gösterir.[111]
Çekirdekteki enerji üretimi yıldızların bu kadar çok parlak olmasının nedenidir. Ne zaman bir elementin iki ya da daha fazla atom çekirdeği birleşerek daha ağır bir elementin atom çekirdeğini oluşturmak için kaynaşsa oluşan çekirdek kaynaşması tepkimesinden gama ışını foton salınır. Bu enerji yıldızın dış katmanlarına ulaştığında görünür ışığın da dahil olduğu diğer elektromanyetik enerjiye dönüşür.
Bir yıldızın görünür ışığının doruk titreşim sayısınca belirlenen (frekansı) rengi yıldızın fotosferini de içeren dış katmanlarına bağlıdır.[112] Görünür ışığın yanı sıra yıldızlar insan gözünün göremediği elektromanyetik radyasyon türleri de yayar. Aslında yıldızların elektromanyetik radyasyonu elektromanyetik spektrumun en uzun dalga boyu olan radyo dalgaları ve kızılötesiden en kısa dalga boyu olan morötesi, X ışını ve gama ışınına kadar tamamını kapsar. Yıldızların elektromanyetik radyasyonunun görünür ya da görünmez tüm bileşenleri özellikleri ayırt etmede önem taşır.
Yıldız tayfını kullanan astronomlar yıldızın yüzey sıcaklığını, yüzey kütle çekimini, metalliğini ve dönme hızını belirleyebilirler. Paralaks ölçümüyle yıldızın uzaklığı da biliniyorsa parlaklığı da belirlenebilir. Daha sonra yıldız modellemelerine bakılarak kütle, yarıçap, yüzey kütleçekimi ve dönme sıklığı (frekansı) tahmin edilebilir. Çift yıldız sistemlerindeki yıldızların kütlesi doğrudan ölçülebilir. kütleçekimsel mikromercekleme yöntemi de bir yıldızın kütlesini belirler.[113]) Bu değişkenleri kullanan astronomları yıldızın yaşını da tahmin edebilir.[114]
Astronomideparlaklık, bir yıldızın birim zamanda yaydığı ışığın ya da diğer ışınım enerjisinin miktarıdır. Bir yıldızın parlaklığı yarıçapı ve yüzey sıcaklığı ile belirlenir. Çoğu yıldız yüzeyi boyunca her yerden eşit olarak ışıma yaymaz. Örneğin, kendi etrafında hızlıca dönen Vega yıldızının kutuplarında, ekvatorunda olduğundan daha fazla enerji akısı (birim alan başına güç) gerçekleşir.[115]
Yüzeyde görülen ve ortalamadan düşük sıcaklık ile parlaklığa sahip olan bölgelere yıldız lekesi denir. Güneş gibi küçük, cüce yıldızlar genel olarak çok az miktarda küçük yıldız lekesi olan tekerlere sahiptir. Daha büyük dev yıldızlar daha büyük ve bariz yıldız lekelerine sahiptir[116] ve güçlü yıldız kenar kararması gösterirler. Bu yıldız tekerinin kenarlarına doğru parlaklığın azalmasıdır.[117] UV Ceti gibi kırmızı cüce parıltılı yıldızlarda oldukça belirgin yıldız lekesi oluşumları gösterebilirler.[118]
Bir yıldızın görünür parlaklığı, kadir ile ölçülür. Bu kavram Dünya’dan uzaklığı, yıldızlararası toz ve gazın söndürücü etkisi ve atmosferden geçerken uğradığı değişime göre yıldızın parlaklığını belirler. Mutlak kadir yıldız ile Dünya arasındaki mesafe 10 parsek (32,6 ışık yılı) olsa kadir sınıfının ne olacağıdır ve doğrudan yıldızın parlaklığına bağlıdır.
Hem görünür hem de mutlak kadir sınıfı ölçeği logaritmik sayılarından oluşur. Kadir sınıfındaki bir sayı değişikliği yaklaşık olarak parlaklığın 2,5 katı (100’ün beşinci kökü yaklaşık olarak 2,512) artmasına eşdeğerdir[120] Yani birinci kadir sınıfındaki (+1.00) bir yıldız ikinci kadir sınıfındaki (+2.00) bir yıldızdan 2,5 kat daha parlaktır ve altıncı kadir sınıfından (+6.00) bir yıldızdan 100 kat daha fazla parlaktır. Uygun gözlem koşullarında gözle görülebilen en sönük yıldızlar yaklaşık +6 kadir sınıfındadır.
Hem görünür hem de mutlak kadir sınıfı ölçeğinde kadir sınıfı sayısı küçüldükçe yıldızlar daha parlak olur. Her iki ölçekte de en parlak yıldızlar eksi kadir sınıfında yer alır. İki yıldız arasındaki parlaklık farkını hesaplamak için parlak yıldızın kadir sınıfı (mb) daha sönük olan yıldızın kadir sınıfından (mf) çıkarılır ve aradaki fark 2,512 sayısının üssü olarak alınır; yani:
Hem parlaklığa hem de Dünya’dan uzaklığa bağlı olarak bir yıldızın mutlak kadir sınıfı (M) ile görünür kadir sınıfı (m) tam olarak birbirlerine eş değildir.[120] örneğin parlak bir yıldız olan Sirius’un görünür kadir sınıfı −1,44’tür ancak mutlak kadir sınıfı yalnızca +1,41’dir.
Güneş’in görünür kadir sınıfı −26,7’dir ama mutlak kadir sınıfı yalnızca +4.83. Geceleri gökyüzünde görülen en parlak yıldız olan Sirius Güneş’ten yaklaşık olarak 23 kat daha fazla parlaktır, gece gökyüzündeki ikinci en parlak yıldız olan Canopus −5,53’lük mutlak büyüklüğü ile Güneş’ten 14.000 kat daha fazla parlaktır. Canopus, Sirius’tan daha fazla parlak olmasına rağmen, Sirius daha parlak olarak görünür. Bunun nedeni Sirius’un Dünya’dan yalnızca 8,6 ışıkyılı uzakta olmasına karşın Canopus’un 310 ışıkyılı uzakta olmasıdır.
2006 yılı itibarıyla bilinen en yüksek mutlak kadir sınıfına sahip olan yıldız −14,2 ile LBV 1806-20 yıldızıdır. Bu yıldız Güneş’ten 38 milyon kat daha parlaktır.[121] Bilinen en az parlaklığa sahip yıldızlar NGC 6397 kümesinde yer alırlar. BU kümedeki en sönük kırmızı cücelerin kadir sınıfı 26’dır ama 28 kadir sınıfına sahip bir beyaz cüce de bulunmuştur. Bu yıldızlar o kadar sönük bir ışığa sahiptirler ki ışıkları Ay üstünde yakılan bir mum ışığının Dünya’dan görünüşü kadardır.[122]
Sıcaklık | Örnek yıldız | |
---|---|---|
O | 33,000 K ya da daha fazla | Zeta Ophiuchi |
B | 10,500–30,000 K | Rigel |
A | 7,500–10,000 K | Altair |
F | 6,000–7,200 K | Procyon A |
G | 5,500–6,000 K | Güneş |
K | 4,000–5,250 K | Epsilon Indi |
M | 2,600–3,850 K | Proxima Centauri |
Mevcut yıldız sınıflandırma sistemi, yıldızların hidrojen çizgi gücüne göre A'dan Q'ya kadar sınıflandırıldığı 20. yüzyılın başlarında ortaya çıktı.[124] Hidrojen çizgisi gücünün, sıcaklığa ait doğrusal bir fonksiyon olduğu düşünülmüştür. Ancak bu görünenden daha karmaşıktı: sıcaklık arttırıldığında 9000 K'e yaklaşıldı ve sıcaklığın daha da artmasıyla fonksiyon bozuldu. Sınıflandırmalar o zamandan beri yıldızların sıcaklığına göre yapılmakta ve şu an kullanılan sistem de buna dayanmaktadır.[125]
Yıldızlar, tayflarına göre, çok sıcak olan O sınıfı yıldızlardan, atmosferlerinde moleküllerin oluşabileceği kadar soğuk olan M sınıfı yıldızlara kadar tek harfli sisteme göre sınıflandırılır. Azalan yüzey sıcaklıklarına göre ana sınıflandırmalar şunlardır: O, B, A, F, G, K ve M. Nadir bulunan tayf özelliklerine sahip yıldızlara özel sınıflandırmalar da bulunur. Bu tiplerin içinde en çok rastlananlar en soğuk düşük kütleli yıldızlar için L sınıfı ve kahverengi cüceler için de T sınıfıdır. Her harfin 0 ‘dan 9 ‘a (en sıcaktan en soğuğa) sıralanan 10 alt sınıfı bulunur. Ancak, O0 ve O1 sınıfları olmayabileceğinden, bu sistem aşırı yüksek sıcaklıklarda bozulur.[126]
Bunlara ek olarak yıldızlar, uzaysal boyutlarına karşılık gelen ve yüzey kütleçekimlerine göre belirlenen spektral çizgilerindeki "parlaklık etkilerine" göre de sınıflandırılabilir. Bu ölçekteki yıldızlar 0 sınıfından (üstündevler) III sınıfına (devler), V sınıfından (anakol cüceleri) kimi yazarlarca dahil edilen VII sınıfına (beyaz cüceler) kadar sıralanır. Anakol yıldızları, mutlak kadir sınıflarına ve tayf tiplerine göre sınıflandırıldıklarında dar bir bandın üzerinde yer alırlar.[126] Güneş orta sıcaklığa ve sıradan büyüklüğe sahip anakolda yer alan G2V tipi bir sarı cücedir.
Spektral tipin sonuna eklenen küçük harfler spektrumun kendine özgü özelliklerini belirtmek için kullanılır. Örneğin "e" harfi yayım çizgilerinin (emisyon çizgileri) varlığını belirtirken "m" harfi normal ötesi yüksek metal düzeyini belirtir. "var" ise tayf tipinde değişiklikler olduğunu belirtir.[126]
Beyaz cücelerin kendilerine özgü D harfi ile başlayan sınıflandırmaları vardır. Tayfta belirgin olan çizgilerin tipine göre DA, DB, DC, DO, DZ ve DQ diye alt sınıflarına ayrılırlar. Bunları, sıcaklığı gösteren sayısal bir değer izler.[127]
Değişen yıldızlar, içsel veya dışsal özellikleri nedeniyle parlaklıklarında sıralı ya da rastgele değişiklikler gösteren yıldızlardır. İçsel özellikleri nedeniyle değişen yıldızlar üç ana gruba ayrılabilirler.
Zonklayan değişen yıldızlar, yıldızın yaşlanma süreci nedeniyle zaman içinde büyüyerek ya da küçülerek yarıçapı değişen yıldızlardır. Sefe ve sefe benzeri yıldızlar ile Tansık gibi uzun dönemli yıldızları içerir.[128]
Patlayan değişen yıldızlar kütle fırlatma ya da püskürtme olayları nedeniyle parlaklıklarında ani yükselmeler gösteren yıldızlardır.[128] Bu grubun içinde önyıldızlar, Wolf-Rayet yıldızları ve Parıltılı yıldızlar ile dev ve üstdev yıldızlar da bulunur.
Afet ya da patlama değişken yıldızlarının özelliklerinde oldukça dramatik değişiklikler olur. Bu grubun içinde novalar ve süpernovalar bulunur. Yakınında beyaz cüce bulunan bazı çift yıldız sistemleri nova ve Tip 1a süpernova gibi olağanüstü yıldız patlamalarına neden olabilir.[6] Beyaz cüce eş yıldızından hidrojen alarak çekirdek kaynaşması olana kadar kütlesinin artmasıyla patlama oluşur.[129] Bazı novaların tekrar eden hatta sıralı orta ölçekte patlamaları olur.[128]
Çift yıldızlarda yıldız tutulması gibi dışsal nedenlerle de yıldızların parlaklığı değişebilir. Ayrıca dönen yıldızlarda oluşan aşırı yıldız lekeleri nedeniyle de parlaklık değişebilir.[128] Yıldız tutulmasına örnek verilebilecek olan çift yıldız sistemi Umacı'dır; parlaklığı düzenli olarak 2,87 gün içinde 2,3 ile 3,5 kadir sınıfı arasında değişir.
Kararlı, anakol yıldızının içi kuvvetlerin birbirini sürekli karşıladığı sürekli bir denge hâlindedir. Birbirini dengeleyen kuvvetler içeri doğru yönelen kütleçekim kuvveti ve bunu karşılayan plazma gazının ısı enerjisidir. Bu kuvvetlerin birbirini dengelemesi için tipik bir yıldızın çekirdeğindeki sıcaklık 107 K ya da daha yüksek olmalıdır. Bir anakol yıldızının hidrojen yakan çekirdeğinde ortaya çıkan sıcaklık ve basınç çekirdek kaynaşmasının oluşması ve yıldızın daha fazla çökmesini önleyecek kadar yeterli enerji üretir.[130]
Element çekirdekleri yıldızın çekirdeğinde kaynaştıkça gama ışınları şeklinde enerji yayarlar. Bu fotonların çevresini saran plazma ile etkileşime girerek çekirdeğe ısı enerjisi eklerler. Anakoldaki yıldızlar hidrojeni helyuma çevirerek yavaş ama düzenli artan bir oran da çekirdekteki helyumu artırırlar. Sonunda helyum oranı baskın hâle gelir ve çekirdekteki enerji üretimi durur. Bunun yerine 0,4 güneş kütlesinden büyük yıldızlarda yozlaşmış helyum çekirdeğin çevresinde yavaşça genişleyen kabukta çekirdek kaynaşması oluşur.[131]
Hidrostatik dengenin dışında kararlı bir yıldızın içinde enerji dengesini sağlayacak ısıl denge de bulunur. İçeride bulunan ışınsal sıcaklık eğimi sonucunda dışarıya doğru sürekli olarak bir enerji akışı oluşur. Yıldızın herhangi bir katmanından dışa doğru akan enerji akışı, yukarıdan içeriye doğru gelen enerji akışına tam olarak denktir.
Işınım bölgesi yıldızın içinde enerji akışını sağlayacak kadar verimli bir ışınım aktarımı olan bölgedir. Bu bölgede plazma hareketsizdir ve herhangi bir kütle hareketi sönümlenir. Eğer böyle olmazsa plazma dengesiz hâle gelir ve konveksiyon bölge oluşturacak şekilde konveksiyon (ısı yayım) oluşur. Bu çekirdeğin yakınında ya da dış katmanın yüksek opaklık olan bölgelerinde, çok yüksek enerji akışının ortaya çıktığı yerlerde ortaya çıkar.[130]
Anakol yıldızının dış katmanlarında ısıyayımı oluşması tayf tipine bağlıdır. Güneş’in birkaç katı kütlesi olan yıldızların içlerinde ısıyayımsal, dış katmanlarında da ışınım bölgeleri bulunur. Güneş gibi küçük yıldızlar da ise tam tersi ısıyayım dış katmanlarda yer alır.[132] 0,4 güneş kütlesinden daha az kütleye sahip olan kırmızı cücelerin tamamında ısıyayım bulunur dolayısıyla da çekirdekte helyum birikmesi olmaz.[4] Yıldızların çoğunda yıldız yaşlandıkça ve içinin oluşumu değiştikçe ısıyayım bölgeleri de değişir.[130]
Anakol yıldızının gözlemci tarafından görülebilen kısmına fotosfer denir. Bu katmanda yıldızın plazma gazı ışığın fotonlarına karşı saydamlaşır. Çekirdekte üretilen enerji fotosferden uzaya doğru yayılır. Yıldız lekeleri ya da ortalamadan düşük sıcaklığa sahip bölgelere fotosferde ortaya çıkar.
Işık yuvarın üzerinde yıldız atmosferi bulunur. Güneş gibi anakol yıldızlarında asmosferin en alt düzeyi içinde iğnelerin bulunduğu ve yıldız püskürtüleri başladığı ince kromosferdir. Bunu 100 km. içinde çok hızlı bir şekilde sıcaklığın arttığı geçiş bölgesi çevreler. Bunun ötesinde milyonlarca kilometre dışarıya uzanabilen aşırı ısıtılmış plazma olan güneş tacı bulunur.[133] Bir tacın oluşumu yıldızın dış katmanlarında ısıyayımın oluşumuna bağlıdır.[132] Çok yüksek ısısına rağmen taç çok az ışık yayar. Güneş’in tacı yalnızca güneş tutulmasında görünür hâle gelir.
Taçtan sonra plazma parçacıklarından oluşan bir yıldız rüzgârı, yıldızlararası ortam ile etkileşecek şekilde dışarı doğru yayılır.
Yıldız nükleosentezinin bir parçası olarak, yıldızın kütlesine ve bileşimine bağlı olarak yıldız çekirdeklerinde birkaç dizi farklı çekirdek tepkimesi yer alır. Kaynaşan atom çekirdeğinin net kütlesi tepkimeye giren kütlenin toplamından azdır. Kaybolan bu kütle E=mc² kütle-enerji bağıntısına göre enerjiye çevrilir.[3]
Hidrojen çekirdek kaynaşma süreci sıcaklıktan etkilenir, çekirdek sıcaklığındaki orta derece bir artış kaynaşma hızını oldukça önemli derecede artırır. Sonuç olarak anakol yıldızlarının çekirdek sıcaklıkları küçük bir M-sınıfı yıldızda 4 milyon °K ‘den büyük bir O-sınıfı yıldızdaki 40 milyon °K’ya kadar değişkenlik gösterir.[134]
Güneşin 107 °K’lik sıcaklıktaki çekirdeğinde hidrojen proton-proton zincirleme reaksiyonu ile helyuma dönüşür.::[135] 41H → 22H + 2e+ + 2νe(2 x 0.4 MeV)
Bu tepkimeler genel olarak şu tepkimede toplanır:
e+ bir Pozitron, γ gama ışını Foton, νe ise bir nötrinodur. H ve He hidrojen ile helyumun izotoplarıdır. Bu tepkime sonucu salınan enerji milyonlarca elektronvolttur, yani oldukça küçük bir miktar enerjidir. Ancak devasa sayıda tepkimenin aynı anda oluşmasıyla yıldızın ışınım çıktısını sağlayacak kadar enerji üretilir. Buna karşılık, iki hidrojen gazı molekülünün bir oksijen gazı molekülü ile yanması sadece 5.7 eV salmaktadır.
Daha büyük yıldızlarda karbonun katalist olduğu karbon-azot-oksijen çevrimi ile helyum üretilir.[135]
108 °K’lik çekirdek sıcaklıklarına sahip olan ve kütlesi 0,5 ile 10 güneş kütlesi arasında değişen daha gelişmiş yıldızlarda ara metal olarak berilyumu kullanan üçlü alfa süreci ile helyum karbona dönüştürülebilir:[135]4He + 4He + 92 keV → 8*Be
Yani toplam tepkime:
Daha büyük yıldızlarda büzülen çekirdeklerde daha ağır elementlerde Neon yanma süreci ve Oksijen yanma süreci ile yakılabilir. Yıldız nükleosentezinin son aşaması kararlı demir-56 izotopunu üreten Silisyum yanma sürecidir. Endotermik süreç haricinde artık çekirdek kaynaşması olamayacağından daha fazla enerji ancak kütleçekimsel çöküş ile üretilebilir.[135]
Aşağıdaki örnek 20 güneş kütlesine sahip bir yıldızın tüm yakıtını tüketmesi için gereken zamanı gösterir. O-sınıfı bir anakol yıldızı olarak 8 güneş yarıçapına ve Güneş’in parlaklığının 62.000 katına sahip olacaktır.[137]
Yakıt malzemesi |
Sıcaklık (milyon Kelvin) |
Yoğunluk (kg/cm³) |
Yanma süresi ? |
---|---|---|---|
H | 37 | 0.0045 | 8.1 milyon yıl |
He | 188 | 0.97 | 1.2 milyon yıl |
C | 870 | 170 | 976 yıl |
Ne | 1,570 | 3,100 | 0.6 yıl |
O | 1,980 | 5,550 | 1.25 yıl |
S/Si | 3,340 | 33,400 | 11.5 gün |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.