Urična kiselina

From Wikipedia, the free encyclopedia

Urična kiselina

Urična kiselina, mokraćna kiselina, ili urat, je heterociklično jedinjenje ugljenika, azota, kiseonika, i vodonika sa formulom C5H4N4O3.

Kratke činjenice Identifikacija, Svojstva ...
Urična kiselina
IUPAC ime
Drugi nazivi 2,6,8 Trioksipurin
Identifikacija
CAS registarski broj 69-93-2 Y
PubChem[1][2] 1175
ChemSpider[3] 1142
EINECS broj 200-720-7
KEGG[4] C00366
Jmol-3D slike Slika 1
Svojstva
Molekulska formula C5H4N4O3
Molarna masa 168g/mol
Agregatno stanje Beli kristali
Gustina 1.87
Tačka topljenja

razlaže se pri zagrevanju

Tačka ključanja

N/A

Rastvorljivost u vodi neznatna
pKa 5.8

 Y (šta je ovo?)   (verifikuj)

Ukoliko nije drugačije napomenuto, podaci se odnose na standardno stanje (25 °C, 100 kPa) materijala

Infobox references
Zatvori

Hemija

Urična kiselina je diprotonska kiselina sa pKa1=5.4 i pKa2=10.3[6]. Iz tog razloga u jakim alkalijama na visokom pH ona formira dualno naelektrisani uratni jon, dok na biološkom pH, ili u prisustvu ugljene kiseline, ili karbonatnog jona, ona formira jednostruko naelektrisani vodonik uratni jon pošto je njegov pKa2 veći od pKa1 ugljene kiseline. Pošto je njena jonizacija tako slaba, uratne soli su sklone hidrolizi nazad u vodonik uratne soli i slobodnu bazu na pH vrednostima oko neutralne. Ova kiseline je aromatična, jer je derivat purina.

Kao biciklični, heterociklični purinski derivat, urična kiselina se ne protonuje na isti način kao karboksilne kiseline. X-zrak difrakcione studije vodonik uratnog jona u kristalima amonijum vodonik urata, formiranih in vivo kao gihtni depoziti, pokazuju da keto-kiseonik u 2 poziciji tautomera purinske strukture postoji kao hidroksilna grupa i da dva susedna atoma azota u pozicijama 1 i 3 dele jonsko naelektrisanje u šestočlanom pi-rezonancom-stabilizovanom prstenu.[7][8]

Dok se većina organskih kiselina deprotonuje jonizacijom polarne vodonik-kiseonik veze, što je obično praćeno nekom vrtom rezonantne stabilizacije (rezultirajući u karboksilatnom jonu), ova kiselina se deprotonuje na atomu azota i koristi tautomernu keto/hidroksilnu grupu kao elektron-oduzimajuću grupu da uveća pKa1 vrednost. Petočlani prsten takođe poseduje keto grupu (u poziciji 8), flankiranu sa dve sekundare amino grupe (u 7 i 9 pozicijama), i deprotonacija jedne od njih na visokom pH može da objasni pKa2 i ponašanje poput diprotične kiseline. Slično tautomersko preuređivanje i pi-rezonantna stabilizacija bi proizveli jon sa određenim stepenom stabilnosti. (Na strukturi prikazanoj u gore levo, NH u gornjem levom uglu na šestočlanom prstenu je "1", numerišući u smeru kazaljki na satu oko šestočlanog prstena do "6" za keto ugljenik na vrhu tog prstena. Gornji NH u petočlanom prstenu je "7", numerišući u smeru kazaljki na satu oko ovog prstena do donjeg NH, koji je "9".)

Rastvorljivost urične kiseline i njenih soli

Rastvorljivost mokraćne kiseline, njenih alkalnih i zemnoalkalnih soli u vodi je veoma niska. Rastvorljivost ovih materijala u toploj vodi je nešto veća, što omogućava rekristalizaciju. Rastvorljivost ove kiseline i njenih soli u etanolu je veoma niska ili zanemarljiva. U etanol-voda mešavinama rastvorljivosti su negde između krajnjih vrednosti za čist etanol i čistu vodu.

Više informacija Jedinjenje, Hladna voda ...
Jedinjenje Hladna voda Ključala voda
Mokraćna kiselina 15000 2000
NH4 H-urat - 1600
Li H-urat 370 39
Na H-urat 1175 124
K H-urat 790 75
Mg (H-urat)2 3750 160
Ca (H-urat)2 603 276
Na2 urat 77 -
K2 urat 44 35
Ca-urat 1500 1440
Sr-urat 4300 1790
Ba-urat 7900 2700
Zatvori

Numeričke vrednosti u gornjoj tabeli indiciraju kolika masa vode je neophodna da bi se rastvorila jedinica mase jedinjenja, što je ova vrednost manja, to je rastvorljivija supstanca u datom rastvaraču[6][9][10]

Biologija

Mokraćnu kiselinu proizvodi ksantin oksidaza iz ksantina i hipoksantina, dok se ti supstrati formiraju iz purina. Urična kiselina toksičnija za tkiva nego bilo ksantin ili hipoksantin.[11] Urična kiselina se oslobađa u hipoksičnim uslovima.[12]

Kod ljudi i viših primata, urična kiselina je krajnji oksidacioni proizvod metabolizma purina i izlučuje se u urin. Kod većine drugih sisara, enzim urikaza dalje oksidira uričnu kiselinu do alantoina.[13] Gubitak urikaze kod viših primata je u paraleli sa sličnim gubitkom sposobnosti sinteze askorbične kiseline.[14] Urična i askorbinska kiselina su jaki redukujući agensi (elektron donori) i potentni antioksidansi. Kod ljudi, više od polovine antioksidantskog kapaciteta krvne plazme dolazi od mokraćne kiseline.[15] Dalmatinski pas ima genetski defekat apsorpcije mokraćne kiseline u jetri. To rezultira u umanjenoj konverziji u alantoin, tako da ova vrsta izlučuje mokraćnu kiselinu, a ne alantoin, u urin.[16]

Kod ptica i reptila, i nekih pustinjskih sisara (npr. kengurskog pacova), urična kiselina je takođe krajnji proizvod metabolizma purina, ali se izlučuje izmetom kao suva masa. To je omogućeno kompleksnim metaboličkim putem koji je energetski neefikasan u poređenju sa probavom drugog azotnog otpada kao što su ureja (iz ciklusa ureje) ili amonijak, ali ima prednost umanjenja gubitka vode.[17]

Kod ljudi, oko 70% dnevnog izlučivanja urične kiseline odvija se putem bubrega. Kod 5-25% ljudi umanjena renalna ekskrecija dovodi do hiperuricemije.[18]

Genetika

Deo ljudske populacije ima mutacije u proteinima odgovornim za ekskreciju urične kiseline putem bubrega. Devet gena je dosad bilo identifikovano: SLC2A9; ABCG2; SLC17A1; SLC22A11; SLC22A12; SLC16A9; GCKR; LRRC16A; i PDZK1.[19][20] Za SLC2A9 se zna da transportuje uričnu kiselinu i fruktozu.[18][21]

Povezano

Literatura

Vanjske veze

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.