математическая функция Из Википедии, свободной энциклопедии
Моното́нная фу́нкция — функция одной переменной, определённая на некотором подмножестве действительных чисел, которая либо везде (на области своего определения) не убывает, либо везде не возрастает. Более точно, это функция , приращение которой при не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное[1]. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной.
Функция называется возраста́ющей, если большему значению аргумента соответствует не меньшее (по другой терминологии — большее) значение функции. Функция называется убыва́ющей, если большему значению аргумента соответствует не большее (по другой терминологии — меньшее) значение функции.
Пусть дана функция Тогда
функция называется возраста́ющей на , если
.
функция называется стро́го возраста́ющей на , если
.
функция называется убыва́ющей на , если
.
функция называется стро́го убыва́ющей на , если
.
(Строго) возрастающая или убывающая функция называется (строго) монотонной.
Более естественно, когда под терминами возрастающая (убывающая) функция подразумеваются строго возрастающая (убывающая) функция. Тогда про нестрого возрастающую (убывающую) функцию говорят, неубывающая (невозрастающая)[2]:
Функция называется возрастающей на некотором интервале, если для любых двух точек и этого интервала, таких что , справедливо . Другими словами, большему значению аргумента соответствует большее значение функции.
Функция называется убывающей на некотором интервале, если для любых двух точек и этого интервала, таких что , справедливо . Другими словами, большему значению аргумента соответствует меньшее значение функции.
Функция называется неубывающей на некотором интервале, если для любых двух точек и этого интервала, таких что , справедливо .
Функция называется невозрастающей на некотором интервале, если для любых двух точек и этого интервала, таких что , справедливо .
Возрастающие и убывающие функции называются строго монотонными, неубывающие и невозрастающие функции — монотонными.
(Критерий монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на и имеет в каждой точке производную Тогда
не убывает на тогда и только тогда, когда
не возрастает на тогда и только тогда, когда
(Достаточное условие строгой монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на и имеет в каждой точке производную Тогда
если то строго возрастает на
если то строго убывает на
Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место
(Критерий строгой монотонности функции, имеющей производную на интервале) Пусть и всюду на интервале определена производная Тогда строго возрастает на интервале тогда и только тогда, когда выполнены следующие два условия:
Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:
Функция строго возрастает на всей числовой прямой, несмотря на то, что точка является стационарной, т.е. в этой точке .
Функция является строго возрастающей не только на открытом интервале , но и на замкнутом интервале .
Константа одновременно не возрастает и не убывает на всей числовой прямой.
Канторова лестница — пример непрерывной монотонной функции, которая не является константой, но при этом имеет производную равную нулю в почти всех точках.
Collins, P. J. (1971). Concordant mappings and the concordant-dissonant factorization of an arbitrary continuous function. Proceedings of the American Mathematical Society, 27(3), 587-591.